Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Diabet Med ; 41(5): e15265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38093550

RESUMO

AIMS: The aim is to identify people with HNF1A-MODY among individuals in diabetic cohort solely based on low hs-CRP serum level and early diabetes onset. METHODS: In 3537 participants, we analyzed the hs-CRP levels. We analyzed the HNF1A gene in 50 participants (1.4% of the cohort) with type 1 or type 2 diabetes who had hs-CRP ≤0.25 mg/L and were diagnosed with diabetes mellitus (DM) at the age of 8-40 years. We functionally characterized two identified missense variants. RESULTS: Three participants had a rare variant in the HNF1A gene, two of which we classified as likely pathogenic: c.1369_1384dup (p.Val462Aspfs*92) and c.737T>G (p.Val246Gly), and one as likely benign: c.1573A>T (p.Thr525Ser). Our functional studies revealed that p.Val246Gly decreased HNF1α transactivation activity to ~59% and the DNA binding ability to ~16% of the wild-type, while p.Thr525Ser variant showed no effect on transactivation activity, DNA binding, nor nuclear localization. Based on the two identified HNF1A-MODY patients among 3537 people with diabetes, we estimate 0.057% as the minimal HNF1A-MODY prevalence in Slovakia. A positive predictive value of hs-CRP ≤0.25 mg/L for finding HNF1A-MODY individuals was 4.0% (95% CI 0.7%, 13.5%). CONCLUSIONS: Hs-CRP value and age of DM onset could be an alternative approach to current diagnostic criteria with a potential to increase the diagnostic rate of HNF1A-MODY.


Assuntos
Proteína C-Reativa , Diabetes Mellitus Tipo 2 , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Proteína C-Reativa/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Biomarcadores , Idade de Início , Fator 1-alfa Nuclear de Hepatócito/genética , DNA , Mutação
2.
Endocr Regul ; 56(3): 232-248, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35843711

RESUMO

Mitochondria, the cell powerhouse, are membrane-bound organelles present in the cytoplasm of almost all the eukaryotic cells. Their main function is to generate energy in the form of adenosine triphosphate (ATP). In addition, mitochondria store calcium for the cell signaling activities, generate heat, harbor pathways of intermediate metabolism and mediate cell growth and death. Primary mitochondrial diseases (MDs) form a clinically as well as genetically heterogeneous group of inherited disorders that result from the mitochondrial energetic metabolism malfunctions. The lifetime risk of the MDs development is estimated at 1:1470 of newborns, which makes them one of the most recurrent groups of inherited disorders with an important burden for society. MDs are progressive with wide range of symptoms of variable severity that can emerge congenitally or anytime during the life. MD can be caused by mutations in the mitochondrial DNA (mtDNA) or nuclear DNA genes. Mutations inducing impairment of mitochondrial function have been found in more than 400 genes. Furthermore, more than 1200 nuclear genes, which could play a role in the MDs' genetic etiology, are involved in the mitochondrial activities. However, the knowledge regarding the mechanism of the mitochondrial pathogenicity appears to be most essential for the development of effective patient's treatment suffering from the mitochondrial disease. This is an overview update focused on the mitochondrial biology and the mitochondrial diseases associated genes.


Assuntos
Doenças Mitocondriais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Recém-Nascido , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mutação
3.
BMC Pediatr ; 21(1): 578, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915869

RESUMO

BACKGROUND: Isolated methylmalonic aciduria can be caused by pathogenic mutations in the gene for methylmalonyl-CoA mutase or in the genes encoding enzymes involved in the intracellular metabolism of cobalamin. Some of these mutations may be cobalamin responsive. The type of methylmalonic aciduria cannot always be assumed from clinical manifestation and the responsiveness to cobalamin has to be assessed for appropriate cobalamin administration, or to avoid unnecessary treatment. The cases presented herein highlight the importance of genetic testing in methylmalonic aciduria cases and the need for standardisation of the in vivo cobalamin-responsiveness assessment. CASE PRESENTATION: We describe two patients who presented in the first week of life with rapid neurological deterioration caused by metabolic acidosis with severe hyperammonaemia requiring extracorporeal elimination in addition to protein restriction, energy support, carnitine, and vitamin B12 treatment. The severity of the clinical symptoms and high methylmalonic acid concentrations in the urine (>30,000 µmol/mmol of creatinine) without hyperhomocysteinaemia in both of our patients suggested isolated methylmalonic aciduria. Based on the neonatal manifestation and the high methylmalonic acid urine levels, we assumed the cobalamin non-responsive form. The in vivo test of responsiveness to cobalamin was performed in both patients. Patient 1 was evaluated as non-responsive; thus, intensive treatment with vitamin B12 was not used. Patient 2 was responsive to cobalamin, but the dose was decreased to 1 mg i.m. every two weeks with daily oral treatment due to non-compliance. Genetic tests revealed bi-allelic mutations in the genes MMAB and MMAA in Patient 1 and 2, respectively. Based on these results, we were able to start intensive treatment with hydroxocobalamin in both patients. After the treatment intensification, there was no acute crisis requiring hospitalisation in Patient 1, and the urine methylmalonic acid levels further decreased in Patient 2. CONCLUSIONS: Despite carrying out the in vivo test of responsiveness to cobalamin in both patients, only the results of molecular genetic tests led us to the correct diagnosis and enabled intensive treatment with hydroxocobalamin. The combination of the standardized in vivo test of cobalamin responsiveness and genetic testing is needed for accurate diagnosis and appropriate treatment of isolated methylmalonic aciduria.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Testes Genéticos , Humanos , Recém-Nascido , Ácido Metilmalônico , Metilmalonil-CoA Mutase/genética , Vitamina B 12/uso terapêutico
4.
Endocr Regul ; 54(4): 260-265, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33885251

RESUMO

Objective. Mutations of the KCNJ11 gene are the most common cause of the permanent neonatal diabetes mellitus (PNDM). Majority of people with KNCJ11-PNDM have a de-novo mutation. We aimed to compare diabetes phenotype in two children and their mothers with PNDM carrying the same sulfonylurea-sensitive KCNJ11 variants.Methods. We have compared glibenclamide (sulfonylurea) dose, C-peptide, and HbA1c serum levels in two children and their mothers with PNDM up to 5.5-year follow-up. All of them were carrying a heterozygous activating KCNJ11 pathogenic variant (p.R201H in Family 1 or p.H46Y in Family 2). The mothers were initially treated with insulin and successfully switched to sulfonylurea at the age of 24 and 11 years, respectively. Both children were treated with sulfonylurea since the diagnosis of PNDM.Results. Glibenclamide dose was similar in both children (0.02-0.03 mg/kg/day), but lower compared to their mothers (0.1-0.4 mg/kg/day) (p<0.002). Fasting serum C-peptide levels were also lower in children (70-210 pmol/l) than in their mothers (263-720 pmol/l) (p<0.002), but no significant differences were observed in postprandial C-peptide levels. HbA1c was lower only in the son of SVK4 (Family 2) compared to his mother, as she had poor adherence to the sulfonylurea therapy during the first years after the sulfonylurea switch.Conclusions. Evaluation of the treatment in people with sulfonylurea-sensitive KNCJ11-PNDM should respect the age of patients together with the type of mutation and duration of diabetes at therapy start and may differ within one family.


Assuntos
Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adulto , Peptídeo C/sangue , Pré-Escolar , Diabetes Mellitus/tratamento farmacológico , Feminino , Seguimentos , Hemoglobinas Glicadas , Humanos , Hipoglicemiantes/administração & dosagem , Masculino , Mães , Linhagem , Fenótipo , Compostos de Sulfonilureia/administração & dosagem
5.
BMC Med Genet ; 20(1): 84, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101089

RESUMO

BACKGROUND: Progressive bilateral sensorineural deafness in postlingual period may be linked to many different etiologies including genetic factors. Identification of the exact deafness cause may, therefore, be quite challenging. Here we present a family with late-onset hearing loss as an autosomal dominant trait caused by a novel EYA4 mutation. CASE PRESENTATION: Forty-four years old female proband clinically investigated for progressive hearing loss and occasional dizziness with positive family history for deafness was subject to molecular-genetic testing. Patient's DNA sample was analyzed by whole exome sequencing. We identified a novel missense variant c.804G > C located at the last base pair of exon 10 in EYA4. Candidate variant was confirmed by Sanger sequencing in the proband and her family members. In silico prediction tools and co-segregation analysis were used to indicate pathogenicity of the identified variant. To confirm our hypothesis, we performed minigene assay to demonstrate if the transcript of exon 10 in EYA4 is present. We provide evidence that this mutation in vitro compromises donor site functionality and causes exon 10 skipping and frameshift that most likely results in nonsense-mediated mRNA decay. The onset of moderate to severe hearing loss in the family ranged from 10 to 40 years. The normal cardiac phenotype was confirmed by ECG and echocardiography. CONCLUSIONS: We identified a novel EYA4 mutation associated with adult-onset autosomal dominant sensorineural hearing loss. This report extends the knowledge of spectrum of EYA4 mutations and demonstrates the pathogenicity of a variant affecting specific position in the gene. A comprehensive review of known EYA4 mutations is also given and their impact on cardiac phenotype is discussed. Our findings highlight the importance of genetic testing and complex clinical assessment in patients with familial progressive hearing loss.


Assuntos
Genes Dominantes , Perda Auditiva/genética , Transativadores/genética , Idade de Início , Feminino , Humanos , Pessoa de Meia-Idade , Eslováquia
6.
Endocr Regul ; 53(2): 110-134, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31517624

RESUMO

MODY (Maturity Onset Diabetes of the Young) is a type of diabetes resulting from a pathogenic effect of gene mutations. Up to date, 13 MODY genes are known. Gene HNF1A is one of the most common causes of MODY diabetes (HNF1A-MODY; MODY3). This gene is polymorphic and more than 1200 pathogenic and non-pathogenic HNF1A variants were described in its UTRs, exons and introns. For HNF1A-MODY, not just gene but also phenotype heterogeneity is typical. Although there are some clinical instructions, HNF1A-MODY patients often do not meet every diagnostic criteria or they are still misdiagnosed as type 1 and type 2 diabetics. There is a constant effort to find suitable biomarkers to help with in distinguishing of MODY3 from Type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). DNA sequencing is still necessary for unambiguous confirmation of clinical suspicion of MODY. NGS (Next Generation Sequencing) methods brought discoveries of multiple new gene variants and new instructions for their pathogenicity classification were required. The most actual problem is classification of variants with uncertain significance (VUS) which is a stumbling-block for clinical interpretation. Since MODY is a hereditary disease, DNA analysis of family members is helpful or even crucial. This review is updated summary about HNF1A-MODY genetics, pathophysiology, clinics functional studies and variant classification.


Assuntos
Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Fator 1-alfa Nuclear de Hepatócito/genética , Mutação , Biomarcadores/análise , Análise Mutacional de DNA , Diabetes Mellitus Tipo 2/classificação , Diagnóstico Diferencial , Humanos , Fenótipo
7.
Hum Mutat ; 38(4): 409-425, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28055140

RESUMO

Impairment of translation initiation and its regulation within the integrated stress response (ISR) and related unfolded-protein response has been identified as a cause of several multisystemic syndromes. Here, we link MEHMO syndrome, whose genetic etiology was unknown, to this group of disorders. MEHMO is a rare X-linked syndrome characterized by profound intellectual disability, epilepsy, hypogonadism and hypogenitalism, microcephaly, and obesity. We have identified a C-terminal frameshift mutation (Ile465Serfs) in the EIF2S3 gene in three families with MEHMO syndrome and a novel maternally inherited missense EIF2S3 variant (c.324T>A; p.Ser108Arg) in another male patient with less severe clinical symptoms. The EIF2S3 gene encodes the γ subunit of eukaryotic translation initiation factor 2 (eIF2), crucial for initiation of protein synthesis and regulation of the ISR. Studies in patient fibroblasts confirm increased ISR activation due to the Ile465Serfs mutation and functional assays in yeast demonstrate that the Ile465Serfs mutation impairs eIF2γ function to a greater extent than tested missense mutations, consistent with the more severe clinical phenotype of the Ile465Serfs male mutation carriers. Thus, we propose that more severe EIF2S3 mutations cause the full MEHMO phenotype, while less deleterious mutations cause a milder form of the syndrome with only a subset of the symptoms.


Assuntos
Epilepsia , Fator de Iniciação 2 em Eucariotos/genética , Hipogonadismo , Deficiência Intelectual/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Microcefalia , Mutação , Sequência de Aminoácidos , Saúde da Família , Feminino , Genitália/anormalidades , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Obesidade , Linhagem , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos , Síndrome
8.
Vnitr Lek ; 62(11 Suppl 4): S103-112, 2016.
Artigo em Tcheco | MEDLINE | ID: mdl-27921434

RESUMO

Congenital hyperinsulinism (CHI) is the most common cause of severe persistent hypoglycemia in neonates and infants. Early diagnosis and effective treatment (based on the principles of pharmacogenetics) play the key role for the prognosis. The DNA anlysis, which can identify mutation in one of the 11 genes causing MODY, is crutial in the diagnostics. Moreover, The genotype determines also the optimal therapy approach (medicaments, diet or rarely surgery). There was a large progress of novel medicaments treating particularly most severe (diazoxide-resistant) forms of CHI.Key words: congenital hyperinsulinism - diazoxid - DNA analysis - hypoglycemia - somatostatine analogues.


Assuntos
Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/terapia , Hiperinsulinismo Congênito/genética , Genótipo , Humanos , Recém-Nascido , Mutação , Prognóstico , Resultado do Tratamento
9.
Diabetologia ; 57(3): 480-4, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24323243

RESUMO

AIMS/HYPOTHESIS: MODY is mainly characterised by an early onset of diabetes and a positive family history of diabetes with an autosomal dominant mode of inheritance. However, de novo mutations have been reported anecdotally. The aim of this study was to systematically revisit a large collection of MODY patients to determine the minimum prevalence of de novo mutations in the most prevalent MODY genes (i.e. GCK, HNF1A, HNF4A). METHODS: Analysis of 922 patients from two national MODY centres (Slovakia and the Czech Republic) identified 150 probands (16%) who came from pedigrees that did not fulfil the criterion of two generations with diabetes but did fulfil the remaining criteria. The GCK, HNF1A and HNF4A genes were analysed by direct sequencing. RESULTS: Mutations in GCK, HNF1A or HNF4A genes were detected in 58 of 150 individuals. Parents of 28 probands were unavailable for further analysis, and in 19 probands the mutation was inherited from an asymptomatic parent. In 11 probands the mutations arose de novo. CONCLUSIONS/INTERPRETATION: In our cohort of MODY patients from two national centres the de novo mutations in GCK, HNF1A and HNF4A were present in 7.3% of the 150 families without a history of diabetes and 1.2% of all of the referrals for MODY testing. This is the largest collection of de novo MODY mutations to date, and our findings indicate a much higher frequency of de novo mutations than previously assumed. Therefore, genetic testing of MODY could be considered for carefully selected individuals without a family history of diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , República Tcheca/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Predisposição Genética para Doença , Testes Genéticos , Quinases do Centro Germinativo , Humanos , Linhagem , Prevalência , Análise de Sequência de DNA , Eslováquia/epidemiologia
10.
Neurol Genet ; 9(6): e200106, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38235041

RESUMO

Objectives: The PMPCA gene encodes the α-subunit of mitochondrial processing peptidase (α-MPP), an enzyme responsible for cleavage of nuclear-encoded mitochondrial precursor proteins after their import into mitochondria. Mutations in this gene have been described in patients with nonprogressive or slow progressive cerebellar ataxia, with variable age at onset and severity. Cerebellar atrophy and striatum changes were found in severe cases. Methods: The patient was diagnosed using whole exome sequencing. Skin fibroblasts were used for confirmation of α-MPP levels using western blot and mitochondrial morphology assessment of immunofluorescent confocal microscopy images. Results: Two novel compound heterozygous variants in the PMPCA gene (p.Tyr241Ser and p.Met251Val) were identified in an 8-year-old proband with progressive spastic quadriparesis, delayed psychomotor development, and intellectual disability, with onset at 13 months. The brain imaging showed cortical and cerebellar atrophy, reduced volume of basal ganglia with striatum hyperintensity, and periventricular white matter changes. The patient's fibroblasts showed a decreased α-MPP level and reduced and fragmented mitochondria. Discussion: The described case contributes to the number of patients with progressive PMPCA-related disease with a severe intermediate phenotype. Moreover, we extend the phenotype to Leigh-like white matter changes that have not been described in previously reported cases.

11.
Orphanet J Rare Dis ; 18(1): 92, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095554

RESUMO

BACKGROUND: Pathogenic variants in the ATAD3A gene lead to a heterogenous clinical picture and severity ranging from recessive neonatal-lethal pontocerebellar hypoplasia through milder dominant Harel-Yoon syndrome up to, again, neonatal-lethal but dominant cardiomyopathy. The genetic diagnostics of ATAD3A-related disorders is also challenging due to three paralogous genes in the ATAD3 locus, making it a difficult target for both sequencing and CNV analyses. RESULTS: Here we report four individuals from two families with compound heterozygous p.Leu77Val and exon 3-4 deletion in the ATAD3A gene. One of these patients was characterized as having combined OXPHOS deficiency based on decreased complex IV activities, decreased complex IV, I, and V holoenzyme content, as well as decreased levels of COX2 and ATP5A subunits and decreased rate of mitochondrial proteosynthesis. All four reported patients shared a strikingly similar clinical picture to a previously reported patient with the p.Leu77Val variant in combination with a null allele. They presented with a less severe course of the disease and a longer lifespan than in the case of biallelic loss-of-function variants. This consistency of the phenotype in otherwise clinically heterogenous disorder led us to the hypothesis that the severity of the phenotype could depend on the severity of variant impact. To follow this rationale, we reviewed the published cases and sorted the recessive variants according to their impact predicted by their type and the severity of the disease in the patients. CONCLUSION: The clinical picture and severity of ATAD3A-related disorders are homogenous in patients sharing the same combinations of variants. This knowledge enables deduction of variant impact severity based on known cases and allows more accurate prognosis estimation, as well as a better understanding of the ATAD3A function.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Variação Biológica da População , Mitocôndrias , ATPases Associadas a Diversas Atividades Celulares/genética , Mitocôndrias/genética , Fenótipo , Humanos
12.
Sci Rep ; 13(1): 6790, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100887

RESUMO

Little is known about complete remission in Type 1 diabetes mellitus (T1D) with the discontinuance of insulin treatment for a period of time. In this retrospective study we analysed the frequency and factors of onset and duration of 1. remission and 2. complete remission in children and adolescents with T1D from the Children Diabetes Centre in Bratislava, Slovakia. A total of 529 individuals with T1D, aged < 19 years (8.5 ± 4.3 years) at diabetes onset were included in the study. Remission was defined by HbA1c < 7.0% (53 mmol/mol) and an insulin daily dose < 0.5 IU/kg (and 0 IU/kg for complete remission). Remission occurred in 210 (39.7%) participants, and 15 of them had complete remission (2.8% from all participants). We have identified a new independent factor of complete remission onset (higher C-peptide). Complete remitters had a longer duration of remission compared with other remitters and also differed in lower HbA1c levels. No association was seen with autoantibodies or genetic risk score for T1D. Thus, not only partial but also complete remission is influenced by factors pointing toward an early diagnosis of T1D, which is important for better patient outcome.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Criança , Adolescente , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/epidemiologia , Diabetes Mellitus Tipo 1/diagnóstico , Estudos Retrospectivos , Hemoglobinas Glicadas , Prevalência , Insulina/uso terapêutico , Indução de Remissão , Hipoglicemiantes/uso terapêutico
13.
Genes (Basel) ; 14(12)2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-38136996

RESUMO

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy resulting from dysfunction of the protein myotubularin encoded by the MTM1 gene. XLMTM has a high neonatal and infantile mortality rate due to a severe myopathic phenotype and respiratory failure. However, in a minority of XLMTM cases, patients present with milder phenotypes and achieve ambulation and adulthood. Notable facial dysmorphia is also present. METHODS: We investigated the genotype-phenotype correlations in newly diagnosed XLMTM patients in a patients' cohort (previously published data plus three novel variants, n = 414). Based on the facial gestalt difference between XLMTM patients and unaffected controls, we investigated the use of the Face2Gene application. RESULTS: Significant associations between severe phenotype and truncating variants (p < 0.001), frameshift variants (p < 0.001), nonsense variants (p = 0.006), and in/del variants (p = 0.036) were present. Missense variants were significantly associated with the mild and moderate phenotype (p < 0.001). The Face2Gene application showed a significant difference between XLMTM patients and unaffected controls (p = 0.001). CONCLUSIONS: Using genotype-phenotype correlations could predict the disease course in most XLMTM patients, but still with limitations. The Face2Gene application seems to be a practical, non-invasive diagnostic approach in XLMTM using the correct algorithm.


Assuntos
Mutação de Sentido Incorreto , Miopatias Congênitas Estruturais , Recém-Nascido , Humanos , Prognóstico , Fenótipo , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Estudos de Associação Genética
14.
Int J Pediatr Otorhinolaryngol ; 140: 110499, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234331

RESUMO

Waardenburg syndrome (WS) is a clinically and genetically heterogeneous group of inherited disorders manifesting with sensorineural hearing loss and pigmentary anomalies. Here we present two Caucasian families with novel variants in EDNRB and SOX10 representing both sides of phenotype spectrum in WS. The c.521G>A variant in EDNRB identified in Family 1 leads to disruption of the cysteine disulfide bridge between extracellular segments of endothelin receptor type B and causes relatively mild phenotype of WS type II with low penetrance. The novel nonsense variant c.900C>A in SOX10 detected in Family 2 leads to PCWH syndrome and was found to be lethal.


Assuntos
Síndrome de Waardenburg , Humanos , Mutação , Fenótipo , Receptor de Endotelina B/genética , Fatores de Transcrição SOXE/genética , Síndrome , Síndrome de Waardenburg/genética
15.
Sci Rep ; 11(1): 22488, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795337

RESUMO

The genetic heterogeneity of sensorineural hearing loss (SNHL) is a major hurdle to the detection of disease-causing variants. We aimed to identify underlying causal genes associated with mid-frequency hearing loss (HL), which contributes to less than about 1% of SNHL cases, by whole exome sequencing (WES). Thirty families segregating mid-frequency SNHL, in whom biallelic GJB2 mutations had been previously excluded, were selected from among 851 families in our DNA repository of SNHL. DNA samples from the probands were subjected to WES analysis and searched for candidate variants associated with SNHL. We were able to identify the genetic aetiology in six probands (20%). In total, we found three pathogenic and three likely pathogenic variants in four genes (COL4A5, OTOGL, TECTA, TMPRSS3). One more proband was a compound heterozygote for a pathogenic variant and a variant of uncertain significance (VUS) in MYO15A gene. To date, MYO15A and TMPRSS3 have not yet been described in association with mid-frequency SNHL. In eight additional probands, eight candidate VUS variants were detected in five genes (DIAPH1, MYO7A, TECTA, TMC1, TSPEAR). Seven of these 16 variants have not yet been published or mentioned in the available databases. The most prevalent gene was TECTA, identified in 23% of all tested families. Furthermore, we confirmed the hypothesis that a substantive portion of cases with this conspicuous audiogram shape is a consequence of a genetic disorder.


Assuntos
Marcadores Genéticos , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Adolescente , Adulto , Idade de Início , Alelos , Audiometria de Tons Puros , Criança , Pré-Escolar , Cromossomos Humanos X , Colágeno/química , Exoma , Feminino , Genes Recessivos , Testes Genéticos , Variação Genética , Células Ciliadas Auditivas/metabolismo , Testes Auditivos , Heterozigoto , Humanos , Lactente , Masculino , Proteínas de Membrana/genética , Mutação , Miosinas/genética , Proteínas de Neoplasias/genética , Nefrite Hereditária/genética , Linhagem , Serina Endopeptidases/genética , Sequenciamento do Exoma
16.
Orphanet J Rare Dis ; 15(1): 222, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32847582

RESUMO

BACKGROUND: The Roma are a European ethnic minority threatened by several recessive diseases. Variants in MANBA cause a rare lysosomal storage disorder named beta-mannosidosis whose clinical manifestation includes deafness and mental retardation. Since 1986, only 23 patients with beta-mannosidosis and biallelic MANBA variants have been described worldwide. RESULTS: We now report on further 10 beta-mannosidosis patients of Roma origin from eight families in the Czech and Slovak Republics with hearing loss, mental retardation and homozygous pathogenic variants in MANBA. MANBA variant c.2158-2A>G screening among 345 anonymized normal hearing controls from Roma populations revealed a carrier/heterozygote frequency of 3.77%. This is about 925 times higher than the frequency of this variant in the gnomAD public database and classifies the c.2158-2A>G variant as a prevalent, ethnic-specific variant causing hearing loss and mental retardation in a homozygous state. The frequency of heterozygotes/carriers is similar to another pathogenic variant c.71G>A (p.W24*) in GJB2, regarded as the most frequent variant causing deafness in Roma populations. CONLCUSION: Beta-mannosidosis, due to a homozygous c.2158-2A>G MANBA variant, is an important and previously unknown cause of hearing loss and mental retardation among Central European Roma.


Assuntos
Surdez , Perda Auditiva , Roma (Grupo Étnico) , beta-Manosidose , República Tcheca , Surdez/genética , Etnicidade , Perda Auditiva/genética , Humanos , Grupos Minoritários , Roma (Grupo Étnico)/genética , Eslováquia/epidemiologia
17.
J Mol Neurosci ; 67(4): 559-563, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30632081

RESUMO

Impairment of saposin B causes rare atypical metachromatic leukodystrophy (MLD). It is encoded (together with saposin A, C, and D) by the PSAP gene. Only ten pathogenic variants were described in the PSAP gene in MLD patients to date. We report on two novel variants in the PSAP gene - c.679_681delAAG in the saposin B encoding exon 6 and c.1268delT in the saposin D encoding exon 11 in a patient with MLD. We discuss the fact, that variants resulting in PSAP null allele can be shared in patients with the deficit of other saposins (A-D) or whole prosaposin. The patient's phenotype depends then on the nature of the second allele - atypical Gaucher disease in case of saposin A, MLD in case of saposin B, and Krabbe disease in case of saposin C impairing mutations. The clinically most severe prosaposin deficit is caused by the presence of two PSAP null alleles. Thus, the assessment of a variant impact is needed to prevent delayed diagnosis or misdiagnosis in patients with PSAP mutations.


Assuntos
Leucodistrofia Metacromática/genética , Mutação com Perda de Função , Saposinas/genética , Éxons , Humanos , Lactente , Leucodistrofia Metacromática/patologia , Masculino , Fenótipo
18.
J Clin Endocrinol Metab ; 93(6): 2255-62, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18334583

RESUMO

CONTEXT: GH deficiency (GHD) in adults is associated with central adiposity, dyslipidemia, and insulin resistance. OBJECTIVE: The objective of the study was to test the hypothesis that GHD might change the spectrum of adipokines and thus influence the adipose tissue and the whole-body metabolic and inflammatory status leading to development of insulin resistance. DESIGN: This was a single-center observational study with a cross-sectional design. PARTICIPANTS AND METHODS: Protein arrays were used to characterize adipokines expressed in the sc adipose tissue obtained from young GHD adults and compared with age-, gender-, and body mass index (BMI)-matched group of healthy individuals. All subjects underwent an oral glucose tolerance test, euglycemic hyperinsulinemic clamp, and magnetic resonance imaging examination. RESULTS: Presence of abdominal obesity, enlarged adipocytes, increased circulating high-sensitivity C-reactive protein, impaired glucose tolerance, and decreased insulin action were found in GHD. Changes in adipokine protein expression due to GHD were highly dependent on the obesity phenotype. Lean GHD individuals (BMI approximately 23 kg/m(2)) had decreased protein levels for stem cell factor and epithelial growth factor, indicating a possible defect in adipocyte differentiation and proliferation. Decrease of vascular endothelial growth factor, stromal cell-derived factor, angiopoietin-2, and brain-derived neurotrophic factor advocated for attenuated angiogenesis and neurogenesis. Presence of obesity (BMI approximately 31 kg/m(2)) eliminated these inhibitory effects. However, adipose tissue expansion in GHD individuals was paralleled by an elevation of adipose tissue proinflammatory cytokines (IL-1beta, interferon-gamma) and chemoattractants (interferon-inducible T cell alpha-chemoattractant, monocyte chemotactic protein-2, monocyte chemotactic protein-3, eotaxin). CONCLUSION: Our data demonstrate that GHD modulates adipokine and cytokine protein expression pattern, which might influence the adipose tissue growth and differentiation and predispose to tissue hypoxia, inflammation, and a defect in the whole-body insulin action.


Assuntos
Adipócitos Brancos/patologia , Adipocinas/metabolismo , Crescimento Celular , Suscetibilidade a Doenças/metabolismo , Nanismo Hipofisário/metabolismo , Doenças Metabólicas/etiologia , Adipócitos Brancos/metabolismo , Adipogenia , Adulto , Estudos de Casos e Controles , Proliferação de Células , Estudos Transversais , Nanismo Hipofisário/patologia , Feminino , Humanos , Inflamação/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Obesidade/metabolismo , Análise Serial de Proteínas , Magreza/metabolismo
19.
Endocr Regul ; 52(2): 110-118, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29715184

RESUMO

OBJECTIVES: Leigh syndrome is a progressive early onset neurodegenerative disease typically presenting with psychomotor regression, signs of brainstem and/or basal ganglia disease, lactic acidosis, and characteristic magnetic resonance imaging findings. At molecular level, deficiency of respiratory complexes and/or pyruvate dehydrogenase complex is usually observed. Nuclear gene SURF1 encodes an assembly factor for cytochrome c-oxidase complex of the respiratory chain and autosomal recessive mutations in SURF1 are one of the most frequent causes of cytochrome c-oxidase-related Leigh syndrome cases. Here, we aimed to elucidate the genetic basis of Leigh syndrome in three Slovak families. METHODS AND RESULTS: Three probands presenting with Leigh syndrome were selected for DNA analysis. The first proband, presenting with atypical LS onset without abnormal basal ganglia magnetic resonance imaging findings, was analyzed with whole exome sequencing. In the two remaining probands, SURF1 was screened by Sanger sequencing. Four different heterozygous mutations were identified in SURF1: c.312_321delinsAT:p.(Pro104Profs*1), c.588+1G>A, c.823_833+7del:p. (?) and c.845_846del:p.(Ser282Cysfs*9). All the mutations are predicted to have a loss-of-function effect. CONCLUSIONS: We identified disease-causing mutations in all three probands, which points to the important role of SURF1 gene in etiology of Leigh syndrome in Slovakia. Our data showed that patients with atypical Leigh syndrome phenotype without lesions in basal ganglia may benefit from the whole exome sequencing method. In the case of probands presenting the typical phenotype, Sanger sequencing of the SURF1 gene seems to be an effective method of DNA analysis.


Assuntos
Doença de Leigh/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Doença de Leigh/diagnóstico por imagem , Doença de Leigh/patologia , Doença de Leigh/fisiopatologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas Mitocondriais/antagonistas & inibidores , Mutação , Linhagem , Eslováquia , Sequenciamento do Exoma
20.
Diabetes Res Clin Pract ; 126: 144-150, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28242437

RESUMO

AIM: Congenital hyperinsulinism (CHI) and glycogen storage disease (glycogenosis) are both causing hypoglycemia during infancy, but with different additional clinical features and therapeutic approach. We aimed to identify a genetic cause in a child with an ambiguous phenotype. METHODS AND RESULTS: We present a child with hyperinsulinemic hypoglycemia, physiological 3-OH butyrate, increased triglyceride serum levels, increased level of glycogen in erythrocytes, increased liver transaminases, and increased echogenicity on liver ultrasonography. As both parents of the proband were referred as healthy, we raised a clinical suspicion on glycogenosis with recessive inheritance. However, whole exome sequencing revealed no mutation in genes causing glycogenosis, but a novel heterozygous variant LRG_483t1: c.427-1G>A in the HNF4A gene was identified. Aberrant splicing resulting in in-frame deletion c.429_476del, p.(T144_I159del) was confirmed by sequencing of HNF4A transcripts reverse-transcribed from whole blood RNA. The same variant was found in five of eight tested family relatives (one of them already had diabetes, two had prediabetes). With regard to the results of DNA analysis, we added diazoxide to the therapy. Consequently, the frequency and severity of hypoglycemia in the proband decreased. We have also recommended sulfonylurea treatment after diabetes onset in adult mutation carriers. CONCLUSIONS: We have identified a novel HNF4A gene mutation in our patient with CHI and glycogenosis-like phenotype. The proband and her family members benefited from the genetic testing by WES method and consequently personalized therapy. Nevertheless, the HNF4A gene testing may be considered in selected CHI cases with glycogenosis-like phenotype prior WES analysis.


Assuntos
Hiperinsulinismo Congênito/genética , Doença de Depósito de Glicogênio/genética , Fator 4 Nuclear de Hepatócito/genética , Adulto , Criança , Feminino , Genótipo , Heterozigoto , Humanos , Masculino , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA