Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 237(3): e13914, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599408

RESUMO

AIM: Two-pore channels (TPCs) constitute a small family of cation channels expressed in endo-lysosomal compartments. TPCs have been characterized as critical elements controlling Ca2+ -mediated vesicular membrane fusion and thereby regulating endo-lysosomal vesicle trafficking. Exo- and endocytotic trafficking and lysosomal degradation are major mechanisms of adaption of epithelial transport. A prime example of highly regulated epithelial transport is the tubular system of the kidney. We therefore studied the localization of TPC protein 1 (TPC1) in the kidney and its functional role in the dynamic regulation of tubular transport. METHODS: Immunohistochemistry in combination with tubular markers were used to investigate TPC1 expression in proximal and distal tubules. The excretion of phosphate and ammonium, as well as urine volume and pH were studied in vivo, in response to dynamic challenges induced by bolus injection of parathyroid hormone or acid-base transitions via consecutive infusion of NaCl, Na2 CO3 , and NH4 Cl. RESULTS: In TPC1-deficient mice, the PTH-induced rise in phosphate excretion was prolonged and exaggerated, and its recovery delayed in comparison with wildtype littermates. In the acid-base transition experiment, TPC1-deficient mice showed an identical rise in phosphate excretion in response to Na2 CO3 compared with wildtypes, but a delayed NH4Cl-induced recovery. Ammonium-excretion decreased with Na2 CO3 , and increased with NH4 Cl, but without differences between genotypes. CONCLUSIONS: We conclude that TPC1 is expressed subapically in the proximal but not distal tubule and plays an important role in the dynamic adaptation of proximal tubular phosphate reabsorption towards enhanced, but not reduced absorption.


Assuntos
Canais de Cálcio , Túbulos Renais Proximais , Hormônio Paratireóideo , Fosfatos , Animais , Camundongos , Adaptação Fisiológica , Rim/metabolismo , Túbulos Renais Proximais/metabolismo , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/farmacologia , Fosfatos/metabolismo , Canais de Cálcio/metabolismo
2.
Sci Rep ; 7(1): 10038, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855648

RESUMO

Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca2+ concentrations required for SNARE-mediated vesicle fusion.


Assuntos
Canais de Cálcio/metabolismo , Endossomos/metabolismo , Animais , Linhagem Celular , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Camundongos , Ligação Proteica , Transporte Proteico , Proteínas Qa-SNARE/metabolismo
3.
PLoS One ; 8(10): e78598, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205277

RESUMO

Voltage-gated Ca(V)2.1 (P/Q-type) Ca²âº channels located at the presynaptic membrane are known to control a multitude of Ca²âº-dependent cellular processes such as neurotransmitter release and synaptic plasticity. Our knowledge about their contributions to complex cognitive functions, however, is restricted by the limited adequacy of existing transgenic Ca(V)2.1 mouse models. Global Ca(V)2.1 knock-out mice lacking the α1 subunit Cacna1a gene product exhibit early postnatal lethality which makes them unsuitable to analyse the relevance of Ca(V)2.1 Ca²âº channels for complex behaviour in adult mice. Consequently we established a forebrain specific Ca(V)2.1 knock-out model by crossing mice with a floxed Cacna1a gene with mice expressing Cre-recombinase under the control of the NEX promoter. This novel mouse model enabled us to investigate the contribution of Ca(V)2.1 to complex cognitive functions, particularly learning and memory. Electrophysiological analysis allowed us to test the specificity of our conditional knock-out model and revealed an impaired synaptic transmission at hippocampal glutamatergic synapses. At the behavioural level, the forebrain-specific Ca(V)2.1 knock-out resulted in deficits in spatial learning and reference memory, reduced recognition memory, increased exploratory behaviour and a strong attenuation of circadian rhythmicity. In summary, we present a novel conditional Ca(V)2.1 knock-out model that is most suitable for analysing the in vivo functions of Ca(V)2.1 in the adult murine forebrain.


Assuntos
Canais de Cálcio Tipo L/deficiência , Canais de Cálcio Tipo L/genética , Cognição/fisiologia , Técnicas de Inativação de Genes , Prosencéfalo/metabolismo , Animais , Comportamento Animal/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Reconhecimento Psicológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA