Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Am J Bot ; 111(2): e16273, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38290971

RESUMO

PREMISE: Density-dependent pollinator visitation can lead to density-dependent mating patterns and within-population genetic structure. In Gymnadenia conopsea, individuals in low-density patches receive more self pollen than individuals in high-density patches, suggesting higher relatedness at low density. Ongoing fragmentation is also expected to cause more local matings, potentially leading to biparental inbreeding depression. METHODS: To evaluate whether relatedness decreases with local density, we analyzed 1315 SNP loci in 113 individuals within two large populations. We quantified within-population genetic structure in one of the populations, recorded potential habitat barriers, and visualized gene flow using estimated effective migration surfaces (EEMS). We further estimated the magnitude of biparental inbreeding depression that would result from matings restricted to within 5 m. RESULTS: There was no significant relationship between local density and relatedness in any population. We detected significant fine-scale genetic structure consistent with isolation by distance, with positive kinship coefficients at distances below 10 m. Kinship coefficients were low, and predicted biparental inbreeding depression resulting from matings within the closest 5 m was a modest 1-3%. The EEMS suggested that rocks and bushes may act as barriers to gene flow within a population. CONCLUSIONS: The results suggest that increased self-pollen deposition in sparse patches does not necessarily cause higher selfing rates or that inbreeding depression results in low establishment success of inbred individuals. The modest relatedness suggests that biparental inbreeding depression is unlikely to be an immediate problem following fragmentation of large populations. The results further indicate that habitat structure may contribute to governing fine-scale genetic structure in G. conopsea.


Assuntos
Endogamia , Magnoliopsida , Humanos , Polinização , Magnoliopsida/genética , Sementes/genética , Estruturas Genéticas , Variação Genética , Repetições de Microssatélites , Genética Populacional
2.
New Phytol ; 237(2): 672-683, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36229922

RESUMO

The individual and combined effects of abiotic factors on pollinator-mediated selection on floral traits are not well documented. To examine potential interactive effects of water and nutrient availability on pollinator-mediated selection on three floral display traits of Primula tibetica, we manipulated pollination and nutrient availability in a factorial experiment, conducted at two common garden sites with different soil water content (natural vs addition). We found that both water and nutrient availability affected floral trait expression in P. tibetica and that hand pollination increased seed production most when both nutrient content and water content were high, indicating joint pollen and resource limitation. We documented selection on all floral traits, and pollinators contributed to directional and correlational selection on plant height and number of flowers. Soil water and nutrient availability interactively influenced the strength of both pollinator-mediated directional and correlational selection, with significant selection observed when nutrient or water availability was high, but not when none or both were added. The results suggest that resource limitation constrains the response of P. tibetica to among-individual variation in pollen receipt, that addition of nutrients or water leads to pollinator-mediated selection and that effects of the two abiotic factors are nonadditive.


Assuntos
Flores , Primula , Flores/fisiologia , Pólen/fisiologia , Polinização/fisiologia , Primula/anatomia & histologia , Seleção Genética , Solo/química , Água/análise , Nutrientes/análise , Nutrientes/metabolismo
3.
J Evol Biol ; 35(11): 1432-1441, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36177776

RESUMO

Natural selection on floral scent composition is a key element of the hypothesis that pollinators and other floral visitors drive scent evolution. The measure of such selection is complicated by the high-dimensional nature of floral scent data and uncertainty about the cognitive processes involved in scent-mediated communication. We use dimension reduction through reduced-rank regression to jointly estimate a scent composite trait under selection and the strength of selection acting on this trait. To assess and compare variation in selection on scent across species, time and space, we reanalyse 22 datasets on six species from four previous studies. The results agreed qualitatively with previous analyses in terms of identifying populations and scent compounds subject to stronger selection but also allowed us to evaluate and compare the strength of selection on scent across studies. Doing so revealed that selection on floral scent was highly variable, and overall about as common and as strong as selection on other phenotypic traits involved in pollinator attraction or pollen transfer. These results are consistent with an important role of floral scent in pollinator attraction. Our approach should be useful for further studies of plant-animal communication and for studies of selection on other high-dimensional phenotypes. In particular, our approach will be useful for studies of pollinator-mediated selection on complex scent blends comprising many volatiles, and when no prior information on the physiological responses of pollinators to scent compounds is available.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Animais , Polinização , Flores/fisiologia , Feromônios , Fenótipo
4.
Oecologia ; 192(4): 989-997, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32078036

RESUMO

Seed production is critical to the persistence of most flowering plant populations, but may be strongly pollen limited. To what extent long-lived plants can compensate pollen limitation by increasing future reproduction is poorly understood. We tested for compensation in two Dactylorhiza species that differ in reproductive investment by experimentally reducing and increasing pollination in two independent annual cohorts and monitoring demographic responses in the subsequent 2 years for the 2014 cohort and in 1 year for the 2015 cohort. Demographic rates in the second year were significantly affected by pollination treatment in both species, but specific responses differed both between species and years. There was no effect of pollination treatment on demographic responses in the third year. In sum, effects were too weak to make up for the lost reproduction; total fruit production across all 3 years was by far highest in the increased pollination treatment in both species. These results show that long-lived plants do not necessarily compensate for pollen limitation by increasing future reproduction. It further suggests that even periodic declines in pollination rates may have severe demographic consequences, particularly in populations where germination is not density dependent. This has implications for predicting plant population viability in response to changes in pollination intensity.


Assuntos
Magnoliopsida , Pólen , Flores , Polinização , Reprodução , Sementes
5.
New Phytol ; 222(4): 2009-2022, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30767233

RESUMO

Floral scent is a crucial trait for pollinator attraction. Yet only a handful of studies have estimated selection on scent in natural populations and no study has quantified the relative importance of pollinators and other agents of selection. In the fragrant orchid Gymnadenia conopsea, we used electroantennographic data to identify floral scent compounds detected by local pollinators and quantified pollinator-mediated selection on emission rates of 10 target compounds as well as on flowering start, visual display and spur length. Nocturnal pollinators contributed more to reproductive success than diurnal pollinators, but there was significant pollinator-mediated selection on both diurnal and nocturnal scent emission. Pollinators selected for increased emission of two compounds and reduced emission of two other compounds, none of which were major constituents of the total bouquet. In three cases, pollinator-mediated selection was opposed by nonpollinator-mediated selection, leading to weaker or no detectable net selection. Our study demonstrates that minor scent compounds can be targets of selection, that pollinators do not necessarily favour stronger scent signalling, and that some scent compounds are subject to conflicting selection from pollinators and other agents of selection. Hence, including floral scent traits into selection analysis is important for understanding the mechanisms behind floral evolution.


Assuntos
Flores/fisiologia , Odorantes , Orchidaceae/fisiologia , Fenótipo , Pólen/fisiologia , Polinização , Característica Quantitativa Herdável , Reprodução
6.
Ann Bot ; 123(2): 247-261, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30032269

RESUMO

Background: Floral nectar is an important determinant of plant-pollinator interactions and an integral component of pollination syndromes, suggesting it is under pollinator-mediated selection. However, compared to floral display traits, we know little about the evolutionary ecology of nectar. Combining a literature review with a meta-analysis approach, we summarize the evidence for heritable variation in nectar traits and link this variation to pollinator response and plant fitness. We further review associations between nectar traits and floral signals and discuss them in the context of honest signalling and targets of selection. Scope: Although nectar is strongly influenced by environmental factors, heritable variation in nectar production rate has been documented in several populations (mean h2 = 0.31). Almost nothing is known about heritability of other nectar traits, such as sugar and amino acid concentrations. Only a handful of studies have quantified selection on nectar traits, and few find statistically significant selection. Pollinator responses to nectar traits indicate they may drive selection, but studies tying pollinator preferences to plant fitness are lacking. So far, only one study conclusively identified pollinators as selective agents on a nectar trait, and the role of microbes, herbivores, nectar robbers and abiotic factors in nectar evolution is largely hypothetical. Finally, there is a trend for positive correlations among floral cues and nectar traits, indicating honest signalling of rewards. Conclusions: Important progress can be made by studies that quantify current selection on nectar in natural populations, as well as experimental approaches that identify the target traits and selective agents involved. Signal-reward associations suggest that correlational selection may shape evolution of nectar traits, and studies exploring these more complex forms of natural selection are needed. Many questions about nectar evolution remain unanswered, making this a field ripe for future research.


Assuntos
Evolução Biológica , Néctar de Plantas/genética , Seleção Genética , Animais , Flores/fisiologia , Variação Genética , Néctar de Plantas/análise , Característica Quantitativa Herdável
7.
Ecol Lett ; 21(5): 724-733, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29575384

RESUMO

Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life-history costs of sprouting, and of dormancy. Short-lived and mycoheterotrophic species have higher proportions of dormant plants than long-lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.


Assuntos
Evolução Biológica , Herbivoria , Demografia , Flores
8.
Ann Bot ; 121(4): 711-721, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29360931

RESUMO

Background and Aims: Floral scent is considered an integral component of pollination syndromes, and its composition and timing of emission are thus expected to match the main pollinator type and time of activity. While floral scent differences among plant species with different pollination systems can be striking, studies on intraspecific variation are sparse, which limits our understanding of the role of pollinators in driving scent divergence. Methods: Here, we used dynamic headspace sampling to quantify floral scent emission and composition during the day and at night in the natural habitat of six Scandinavian populations of the fragrant orchid Gymnadenia conopsea. We tested whether diel scent emission and composition match pollinator type by comparing four populations in southern Sweden, where nocturnal pollinators are more important for plant reproductive success than are diurnal pollinators, with two populations in central Norway, where the opposite is true. To determine to what extent scent patterns quantified in the field reflected plasticity, we also measured scent emission in a common growth chamber environment. Key Results: Both scent composition and emission rates differed markedly between day and night, but only the latter varied significantly among populations. The increase in scent emission rate at night was considerably stronger in the Swedish populations compared with the Norwegian populations. These patterns persisted when plants were transferred to a common environment, suggesting a genetic underpinning of the scent variation. Conclusions: The results are consistent with a scenario where spatial variation in relative importance of nocturnal and diurnal pollinators has resulted in selection for different scent emission rhythms. Our study highlights the importance of adding a characterization of diel variation of scent emission rates to comparative studies of floral scent, which so far have often focused on scent composition only.


Assuntos
Flores/fisiologia , Orchidaceae/fisiologia , Polinização , Ritmo Circadiano/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Países Escandinavos e Nórdicos
9.
Mol Biol Evol ; 33(4): 984-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26685177

RESUMO

Hybridization between populations or species can have pronounced fitness consequences. Yet little is known about how hybridization affects gene regulation. Three main models have been put forward to explain gene expression patterns in hybrids: additive, dominance, or parental effects. Here, we use high throughput RNA-sequencing to examine the extent to which hybrid gene expression follows predictions by each of the three models. We performed a reciprocal crossing experiment between two differentiated populations of the perennial herb Arabidopsis lyrata and sequenced RNA in rosette leaves of 12-week-old plants grown in greenhouse conditions. The two parental populations had highly differentiated gene expression patterns. In hybrids, a majority of genes showed intermediate expression relative to that of their parental populations (i.e., additive effects), but expression was frequently more similar to the maternal than to their paternal population (i.e., maternal effects). Allele-specific expression analyses showed that in the vast majority of cases, genes with pronounced maternal effect expressed both the maternal and the paternal allele. Maternal effects on hybrid gene expression have rarely been documented previously and our study suggests it could be more common than previously assumed. Whether the maternal effect on gene expression persists to later life-stages, and whether the variation in gene expression is manifested in other aspects of the phenotype, remain to be elucidated. Our findings are relevant for understanding the consequences of outbreeding and hybridization and open up several questions for future studies.


Assuntos
Arabidopsis/genética , Aptidão Genética , Hibridização Genética , Alelos , Regulação da Expressão Gênica de Plantas , Fenótipo , Melhoramento Vegetal , Folhas de Planta/genética
10.
Am Nat ; 190(3): 363-376, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28829646

RESUMO

Although many selection estimates have been published, the environmental factors that cause selection to vary in space and time have rarely been identified. One way to identify these factors is by experimentally manipulating the environment and measuring selection in each treatment. We compiled and analyzed selection estimates from experimental studies. First, we tested whether the effect of manipulating the environment on selection gradients depends on taxon, trait type, or fitness component. We found that the effect of manipulating the environment was larger when selection was measured on life-history traits or via survival. Second, we tested two predictions about the environmental factors that cause variation in selection. We found support for the prediction that variation in selection is more likely to be caused by environmental factors that have a large effect on mean fitness but not for the prediction that variation is more likely to be caused by biotic factors. Third, we compared selection gradients from experimental and observational studies. We found that selection varied more among treatments in experimental studies than among spatial and temporal replicates in observational studies, suggesting that experimental studies can detect relationships between environmental factors and selection that would not be apparent in observational studies.


Assuntos
Fenótipo , Seleção Genética , Animais , Meio Ambiente
11.
New Phytol ; 214(3): 1381-1389, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28240377

RESUMO

In animal-pollinated plants, the opportunity for selection and the strength of pollinator-mediated selection are expected to increase with the degree of pollen limitation. However, whether differences in pollen limitation can explain variation in pollinator-mediated and net selection among animal-pollinated species is poorly understood. In the present study, we quantified pollen limitation, variance in relative fitness and pollinator-mediated selection on five traits important for pollinator attraction (flowering start, plant height, flower number, flower size) and pollination efficiency (spur length) in natural populations of 12 orchid species. Pollinator-mediated selection was quantified by subtracting estimates of selection gradients for plants receiving supplemental hand-pollination from estimates obtained for open-pollinated control plants. Mean pollen limitation ranged from zero to 0.96. Opportunity for selection, pollinator-mediated selection and net selection were all positively related to pollen limitation, whereas nonpollinator-mediated selection was not. Opportunity for selection varied five-fold, strength of pollinator-mediated selection varied three-fold and net selection varied 1.5-fold among species. Supplemental hand-pollination reduced both opportunity for selection and selection on floral traits. The results show that the intensity of biotic interactions is an important determinant of the selection regime, and indicate that the potential for pollinator-mediated selection and divergence in floral traits is particularly high in species that are strongly pollen-limited.


Assuntos
Polinização/fisiologia , Seleção Genética , Animais , Flores/anatomia & histologia , Orchidaceae/anatomia & histologia , Fenótipo
12.
Mol Biol Evol ; 32(8): 2036-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25855783

RESUMO

Knowledge of which genes and pathways are affected by inbreeding may help understanding the genetic basis of inbreeding depression, the potential for purging (selection against deleterious recessive alleles), and the transition from outcrossing to selfing. Arabidopsis lyrata is a predominantly self-incompatible perennial plant, closely related to the selfing model species A. thaliana. To examine how inbreeding affects gene expression, we compared the transcriptome of experimentally selfed and outcrossed A. lyrata originating from two Scandinavian populations that express similar inbreeding depression for fitness (∂ ≈ 0.80). The number of genes significantly differentially expressed between selfed and outcrossed individuals were 2.5 times higher in the Norwegian population (≈ 500 genes) than in the Swedish population (≈ 200 genes). In both populations, a majority of genes were upregulated on selfing (≈ 80%). Functional annotation analysis of the differentially expressed genes showed that selfed offspring were characterized by 1) upregulation of stress-related genes in both populations and 2) upregulation of photosynthesis-related genes in Sweden but downregulation in Norway. Moreover, we found that reproduction- and pollination-related genes were affected by inbreeding only in Norway. We conclude that inbreeding causes both general and population-specific effects. The observed common effects suggest that inbreeding generally upregulates rather than downregulates gene expression and affects genes associated with stress response and general metabolic activity. Population differences in the number of affected genes and in effects on the expression of photosynthesis-related genes show that the genetic basis of inbreeding depression can differ between populations with very similar levels of inbreeding depression.


Assuntos
Arabidopsis/genética , Genes de Plantas , Endogamia , Seleção Genética , Regulação da Expressão Gênica de Plantas , Noruega , Fotossíntese , Reprodução , Suécia
13.
Proc Biol Sci ; 283(1842)2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852801

RESUMO

The dominant evolutionary theory of actuarial senescence-an increase in death rate with advancing age-is based on the concept of a germ cell line that is separated from the somatic cells early in life. However, such a separation is not clear in all organisms. This has been suggested to explain the paucity of evidence for actuarial senescence in plants. We used a 32 year study of Dactylorhiza lapponica that replaces its organs each growing season, to test whether individuals of this tuberous orchid senesce. We performed a Bayesian survival trajectory analysis accounting for reproductive investment, for individuals under two types of land use, in two climatic regions. The mortality trajectory was best approximated by a Weibull model, showing clear actuarial senescence. Rates of senescence in this model declined with advancing age, but were slightly higher in mown plots and in the more benign climatic region. At older ages, senescence was evident only when accounting for a positive effect of reproductive investment on mortality. Our results demonstrate actuarial senescence as well as a survival-reproduction trade-off in plants, and indicate that environmental context may influence senescence rates. This knowledge is crucial for understanding the evolution of demographic senescence and for models of plant population dynamics.


Assuntos
Orchidaceae/fisiologia , Teorema de Bayes , Clima , Ecossistema , Dinâmica Populacional , Reprodução
14.
Ecology ; 97(11): 3091-3098, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27870049

RESUMO

The link between biotic interaction intensity and strength of selection is of fundamental interest for understanding biotically driven diversification and predicting the consequences of environmental change. The strength of selection resulting from biotic interactions is determined by the strength of the interaction and by the covariance between fitness and the trait under selection. When the relationship between trait and absolute fitness is constant, selection strength should be a direct function of mean population interaction intensity. To test this prediction, we excluded pollinators for intervals of different length to induce five levels of pollination intensity within a single plant population. Pollen limitation (PL) increased from 0 to 0.77 across treatments, accompanied by a fivefold increase in the opportunity for selection. Trait-fitness covariance declined with PL for number of flowers, but varied little for other traits. Pollinator-mediated selection on plant height, corolla size, and spur length increased by 91%, 34%, and 330%, respectively, in the most severely pollen-limited treatment compared to open-pollinated plants. The results indicate that realized biotic selection can be predicted from mean population interaction intensity when variation in trait-fitness covariance is limited, and that declines in pollination intensity will strongly increase selection on traits involved in the interaction.


Assuntos
Ecossistema , Lepidópteros/fisiologia , Orchidaceae/genética , Orchidaceae/fisiologia , Pólen/fisiologia , Seleção Genética , Animais , Polinização
15.
Ecol Lett ; 18(4): 357-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711515

RESUMO

Costs of reproduction are expected to vary with environmental conditions thus influencing selection on life-history traits. Yet, the effects of habitat conditions and climate on trade-offs among fitness components remain poorly understood. For 2-5 years, we quantified costs of experimentally increased reproduction in two populations (coastal long-season vs. inland short-season) of two long-lived orchids that differ in natural reproductive effort (RE; 30 vs. 75% fruit set). In both species, survival costs were found only at the short-season site, whereas growth and fecundity costs were evident at both sites, and both survival and fecundity costs declined with increasing growing season length and/or summer temperature. The results suggest that the expression of costs of reproduction depend on the local climate, and that climate warming could result in selection favouring increased RE in both study species.


Assuntos
Clima , Fertilidade , Orchidaceae/fisiologia , Temperatura , Modelos Lineares , Noruega , Reprodução , Estações do Ano
16.
New Phytol ; 208(4): 1264-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26183369

RESUMO

Spatial variation in plant-pollinator interactions may cause variation in pollinator-mediated selection on floral traits, but to establish this link conclusively experimental studies are needed. We quantified pollinator-mediated selection on flowering phenology and morphology in four populations of the fragrant orchid Gymnadenia conopsea, and compared selection mediated by diurnal and nocturnal pollinators in two of the populations. Variation in pollinator-mediated selection explained most of the among-population variation in the strength of directional and correlational selection. Pollinators mediated correlational selection on pairs of display traits, and on one display trait and spur length, a trait affecting pollination efficiency. Only nocturnal pollinators selected for longer spurs, and mediated stronger selection on the number of flowers compared with diurnal pollinators in one population. The two types of pollinators caused correlational selection on different pairs of traits and selected for different combinations of spur length and number of flowers. The results demonstrate that spatial variation in interactions with pollinators may result in differences in directional and correlational selection on floral traits in a plant with a semi-generalized pollination system, and suggest that differences in the relative importance of diurnal and nocturnal pollinators can cause variation in selection.


Assuntos
Flores , Lepidópteros , Orchidaceae/genética , Fenótipo , Polinização/genética , Seleção Genética , Animais
17.
Ecology ; 96(1): 214-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236906

RESUMO

Mutualists and antagonists are known to respond to similar floral cues, and may thus cause opposing selection on floral traits. However, we lack a quantitative understanding of their independent and interactive effects. In a population of the orchid Gymnadenia conopsea, we manipulated the intensity of pollination and herbivory in a factorial design to examine whether both interactions influence selection on flowering phenology, floral display, and morphology. Supplemental hand-pollination increased female fitness by 31% and one-quarter of all plants were damaged by herbivores. Both interactions contributed to selection. Pollinators mediated selection for later flowering and herbivores for earlier flowering, while both selected for longer spurs. The strength of selection was similar for both agents, and their effects were additive. As a consequence, there was no. net selection on phenology, whereas selection on spur length was strong. The experimental results demonstrate that both pollinators and herbivores can markedly influence the strength of selection on flowering phenology and floral morphology, and cause both conflicting and reinforcing selection. They also indicate that the direction of selection on phenology will vary with the relative intensity of the mutualistic and antagonistic interaction, potentially resulting in both temporal and among-population variation in optimal flowering time.


Assuntos
Flores/fisiologia , Herbivoria , Orchidaceae/genética , Polinização , Seleção Genética , Animais , Insetos
18.
Ecology ; 94(6): 1236-42, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23923483

RESUMO

Clarifying the relationship between environmental context and the adaptive significance of floral traits is fundamental for an understanding of spatial and temporal variation in pollinator-mediated selection. We manipulated vegetation height and pollination regime of the orchid Dactylorhiza lapponica in a factorial design to test whether pollinator-mediated selection on floral traits is stronger in tall than in short vegetation, and whether this difference is larger for visual traits affecting pollinator attraction than for traits affecting pollination efficiency. In tall vegetation, pollinators mediated strong selection for taller plants (change in selection gradient for pollination, deltabeta(poll) = 0.33), more flowers (deltabeta(poll) = 0.34), and longer spurs (deltabeta(poll) = 0.42). In short vegetation, there was no significant selection on plant height, and pollinator-mediated selection on number of flowers and spur length was reduced by 52% and 25%, respectively. The results demonstrate experimentally that vegetation context can markedly influence the strength of pollinator-mediated selection on visual display traits, and indicate that this effect is weaker for traits affecting pollination efficiency. The study illustrates how crossed manipulations of environmental factors can reveal the causal links between ecological context and selection on floral traits.


Assuntos
Comportamento Animal/fisiologia , Insetos/fisiologia , Orchidaceae/anatomia & histologia , Orchidaceae/fisiologia , Polinização/fisiologia , Animais
19.
Ecology ; 93(8): 1880-91, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22928416

RESUMO

Most plants attract multiple flower visitors that may vary widely in their effectiveness as pollinators. Floral evolution is expected to reflect interactions with the most important pollinators, but few studies have quantified the contribution of different pollinators to current selection on floral traits. To compare selection mediated by diurnal and nocturnal pollinators on floral display and spur length in the rewarding orchid Gymnadenia conopsea, we manipulated the environment by conducting supplemental hand-pollinations and selective pollinator exclusions in two populations in central Norway. In both populations, the exclusion of diurnal pollinators significantly reduced seed production compared to open pollination, whereas the exclusion of nocturnal pollinators did not. There was significant selection on traits expected to influence pollinator attraction and pollination efficiency in both the diurnal and nocturnal pollination treatment. The relative strength of selection among plants exposed to diurnal and nocturnal visitors varied among traits and populations, but the direction of selection was consistent. The results suggest that diurnal pollinators are more important than nocturnal pollinators for seed production in the study populations, but that both categories contribute to selection on floral morphology. The study illustrates how experimental manipulations can link specific categories of pollinators to observed selection on floral traits, and thus improve our understanding of how species interactions shape patterns of selection.


Assuntos
Flores/anatomia & histologia , Insetos/fisiologia , Orchidaceae/anatomia & histologia , Orchidaceae/fisiologia , Polinização/fisiologia , Animais , Flores/fisiologia , Noruega
20.
Evolution ; 76(4): 749-764, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35188979

RESUMO

Pollinator sharing between close relatives can be costly and can promote pollination niche partitioning and floral divergence. This should be reflected by a higher species divergence in sympatry than in allopatry. We tested this hypothesis in two orchid congeners with overlapping distributions and flowering times. We characterized floral traits and pollination niches and quantified pollen limitation in 15 pure and mixed populations, and we measured phenotypic selection on floral traits and performed controlled crosses in one mixed site. Most floral traits differed between species, yet pollinator sharing was extensive. Only the timing of scent emission diverged more in mixed sites than in pure sites, and this was not mirrored by the timing of pollinator visitation. We did not detect divergent selection on floral traits. Seed production was pollen limited in most populations but not more severely in mixed sites than in pure sites. Interspecific crosses produced the same or a higher proportion of viable seeds than intraspecific crosses. The two orchid species attract the same pollinator species despite showing divergent floral traits. However, this does not promote character displacement, implying a low cost of pollinator sharing. Our results highlight the importance of characterizing both traits and ecological niches in character displacement studies.


Assuntos
Flores , Polinização , Odorantes , Pólen , Simpatria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA