Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834782

RESUMO

BACKGROUND: Our team has previously reported physiologic support by the EXTra-uterine Environment for Neonatal Development (EXTEND) of 105 to 117 days gestational age (GA) lambs for up to 28 days with normal organ maturation. However, the fetal lamb brain matures more rapidly, requiring the study of 90-105 day GA fetal lambs to assess more neurodevelopmentally equivalent lambs to the 23-25 week GA extreme premature infant. METHODS: Extremely preterm lambs (90-95 days of GA) were delivered by C-section and supported by EXTEND. Estimated circuit flows were maintained at around 325 ml/kg/min. After support on EXTEND, MRI and histopathologic analysis were performed and compared to 105-112 days GA control lambs. RESULTS: The extremely preterm group includes 10 animals with a mean GA of 91.6 days, a mean weight at cannulation of 0.98 kg and a mean length of stay on EXTEND of 13.5 days (10-21 days). Hemodynamics and oxygenation showed stable parameters. Animals showed growth and physiologic cardiac function. MRI volumetric and diffusion analysis was comparable to controls. Histologic brain analysis revealed no difference between study groups. CONCLUSION: EXTEND appears to support brain and cardiac development in an earlier gestation, less mature, lamb model. IMPACT: Prolonged (up to 21 days) physiological support of extremely preterm lambs of closer neurodevelopmental equivalence to the 24-28 gestational week human was achieved using the EXTEND system. EXTEND treatment supported brain growth and development in extremely preterm fetal lambs and was not associated with intraventricular hemorrhage or white matter injury. Daily echocardiography demonstrated physiologic heart function, absence of cardiac afterload, and normal developmental increase in cardiac chamber dimensions. This study demonstrates hemodynamic and metabolic support by the EXTEND system in the extremely preterm ovine model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA