Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Chem Rev ; 123(15): 9653-9675, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431868

RESUMO

The activation and utilization of substrates mediated by Frustrated Lewis Pairs (FLPs) was initially believed to occur solely via a two-electron, cooperative mechanism. More recently, the occurrence of a single-electron transfer (SET) from the Lewis base to the Lewis acid was observed, indicating that mechanisms that proceed via one-electron-transfer processes are also feasible. As such, SET in FLP systems leads to the formation of radical ion pairs, which have recently been more frequently observed. In this review, we aim to discuss the seminal findings regarding the recently established insights into the SET processes in FLP chemistry as well as highlight examples of this radical formation process. In addition, applications of reported main group radicals will also be reviewed and discussed in the context of the understanding of SET processes in FLP systems.

2.
Chem Soc Rev ; 53(10): 4862-4876, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38623621

RESUMO

Advances in the field of frustrated Lewis pair (FLP) chemistry have led to the discovery of radical pairs, obtained by a single-electron transfer (SET) from the Lewis base to the Lewis acid. Radical pairs are intriguing for their potential to enable cooperative activation of challenging substrates (e.g., CH4, N2) in a homolytic fashion, as well as the exploration of novel radical reactions. In this review, we will cover the two known mechanisms of SET in FLPs-thermal and photoinduced-along with methods (i.e., CV, DFT, UV-vis) to predict the mechanism and to characterise the involved electron donors and acceptors. Furthermore, the available techniques (i.e., EPR, UV-vis, transient absorption spectroscopy) for studying the corresponding radical pairs will be discussed. Initially, two model systems (PMes3/CPh3+ and PMes3/B(C6F5)3) will be reviewed to highlight the difference between a thermal and a photoinduced SET mechanism. Additionally, three cases are analysed to provide further tools and insights into characterizing electron donors and acceptors, and the associated radical pairs. Firstly, a thermal SET process between LiHMDS and [TEMPO][BF4] is discussed. Next, the influence of Lewis acid complexation on the electron acceptor will be highlighted to facilitate a SET between (pBrPh)3N and TCNQ. Finally, an analysis of sulfonium salts as electron acceptors will demonstrate how to manage systems with rapidly decomposing radical species. This framework equips the reader with an expanded array of tools for both predicting and characterizing SET events within FLP chemistry, thereby enabling its extension and application to the broader domain of main-group (photo)redox chemistry.

3.
Chemistry ; 30(35): e202401358, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38624247

RESUMO

The conceptual replacement of nitrogen with phosphorus in common organic functional groups unlocks new properties and reactivity. The phosphorus-containing analogues of triazenes are underexplored but offer great potential as flexible and small bite-angle ligands. This manuscript explores the synthesis and characterisation of a family of air-stable azophosphine-borane complexes, and their subsequent deprotection to the free azophosphines. These compounds are structurally characterised, both experimentally and computationally, and highlight the availability of the phosphorus lone pair for coordination. This is confirmed by demonstrating that neutral azophosphines can act as ligands in Ru complexes, and can coordinate as monodentate or bidentate ligands in a controlled manner, in contrast to their nitrogen analogues.

4.
Angew Chem Int Ed Engl ; 62(48): e202313397, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37831966

RESUMO

Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine-quinone systems and explore their potential for the activation of C-H bonds. PMes3 (Mes=2,4,6-Me3 C6 H2 ) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P-O bonded zwitterionic adduct Mes3 P-DDQ (1), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3 C6 H2 ) afforded C-H bond activation product Tip2 P(H)(2-[CMe2 (DDQ)]-4,6-iPr2 -C6 H2 ) (2). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3 ]⋅+ [DDQ]⋅- , and subsequent homolytic C-H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2 P(H)(2-[CMe2 {TCQ-B(C6 F5 )3 }]-4,6-iPr2 -C6 H2 ) (4, TCQ=tetrachloro-1,4-benzoquinone) and Tip2 P(H)(2-[CMe2 {oQtBu -B(C6 F5 )3 }]-4,6-iPr2 -C6 H2 ) (8, oQtBu =3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ-B(C6 F5 )3 and oQtBu -B(C6 F5 )3 , respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C-H bond activation by the synergistic action of radical ion pairs.

5.
Chem Soc Rev ; 50(1): 87-101, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33210686

RESUMO

There is a clear and pressing need to better manage our planet's resources. Phosphorus is a crucial element for life, but the natural phosphorus cycle has been perturbed to such an extent that humanity faces two dovetailing problems: the dwindling supply of phosphate rock as a resource, and the overabundance of phosphate in water systems leading to eutrophication. This Tutorial Review will explore the current routes to industrial phosphorus compounds, and innovative academic routes towards accessing these same products in a more sustainable manner. It will then describe the many ways that useful phosphate can be recovered from waste streams, and how it can be recycled and used as a resource for new products. Finally, we will briefly discuss the barriers that have thus far prevented the widespread adoption of these technologies, and how we can close the loop to establish a modern phosphorus cycle.

6.
Chemistry ; 27(56): 14007-14016, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34403555

RESUMO

Novel seven-membered cyclic imine-based 1,3-P,N ligands were obtained by capturing a Beckmann nitrilium ion intermediate generated in situ from cyclohexanone with benzotriazole, and then displacing it by a secondary phosphane under triflic acid promotion. These "cycloiminophosphanes" possess flexible non-isomerizable tetrahydroazepine rings with a high basicity; this sets them apart from previously reported iminophophanes. The donor strength of the ligands was investigated by using their P-κ1 - and P,N-κ2 -tungsten(0) carbonyl complexes, by determining the IR frequency of the trans-CO ligands. Complexes with [RhCp*Cl2 ]2 demonstrated the hemilability of the ligands, giving a dynamic equilibrium of κ1 and κ2 species; treatment with AgOTf gives full conversion to the κ2 complex. The potential for catalysis was shown in the RuII -catalyzed, solvent-free hydration of benzonitrile and the RuII - and IrI -catalyzed transfer hydrogenation of cyclohexanone in isopropanol. Finally, to enable access to asymmetric catalysts, chiral cycloiminophosphanes were prepared from l-menthone, as well as their P,N-κ2 -RhIII and a P-κ1 -RuII complexes.


Assuntos
Ligantes , Catálise
7.
Chemistry ; 26(68): 15944-15952, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32602582

RESUMO

In this paper, we highlight the synthesis of a variety of primary phosphine-boranes (RPH2 ⋅BH3 ) from the corresponding dichlorophosphines, simply by using Li[BH4 ] as reductant and provider of the BH3 protecting group. The method offers facile access not only to alkyl- and arylphosphine-boranes, but also to aminophosphine-boranes (R2 NPH2 ⋅BH3 ) that are convenient building blocks but without the protecting BH3 moiety thermally labile and notoriously difficult to handle. The borane-protected primary phosphines can be doubly deprotonated using n-butyllithium to provide soluble phosphanediides Li2 [RP⋅BH3 ] of which the phenyl-derivative Li2 [PhP⋅BH3 ] was structurally characterized in the solid state.

8.
Chemistry ; 26(35): 7736, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32500555

RESUMO

Invited for the cover of this issue are the groups of Ruth M. Gschwind and Robert Wolf (University of Regensburg), Christian Müller (Freie Universität Berlin), and J. Chris Slootweg (University of Amsterdam). The image depicts playing cards representing the reported reactions involving 1-phospha-7-bora-norbornadiene. Read the full text of the article at 10.1002/chem.202000266.

9.
Chemistry ; 26(35): 7788-7800, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32052879

RESUMO

Salt metathesis of 1-methyl-2,4,6-triphenylphosphacyclohexadienyl lithium and chlorobis(pentafluorophenyl)borane affords a 1-phospha-7-bora-norbornadiene derivative 2. The C≡N triple bonds of nitriles insert into the P-B bond of 2 with concomitant C-B bond cleavage, whereas the C≡C bonds of phenylacetylenes react with 2 to form λ4 -phosphabarrelenes. Even though 2 must formally be regarded as a classical Lewis adduct, the C≡N and C≡C activation processes observed (and the mild conditions under which they occur) are reminiscent of the reactivity of frustrated Lewis pairs. Indeed, NMR and computational studies give insight into the mechanism of the reactions and reveal the labile nature of the phosphorus-boron bond in 2, which is also suggested by detailed NMR spectroscopic studies on this compound. Nitrile insertion is thus preceded by ring opening of the bicycle of 2 through P-B bond splitting with a low energy barrier. By contrast, the reaction with alkynes involves formation of a reactive zwitterionic methylphosphininium borate intermediate, which readily undergoes alkyne 1,4-addition.

10.
Chemistry ; 26(41): 9005-9011, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32259331

RESUMO

Archetypal phosphine/borane frustrated Lewis pairs (FLPs) are famed for their ability to activate small molecules. The mechanism is generally believed to involve two-electron processes. However, the detection of radical intermediates indicates that single-electron transfer (SET) generating frustrated radical pairs could also play an important role. These highly reactive radical species typically have significantly higher energy than the FLP, which prompted this investigation into their formation. Herein, we provide evidence that the classical phosphine/borane combinations PMes3 /B(C6 F5 )3 and PtBu3 /B(C6 F5 )3 both form an electron donor-acceptor (charge-transfer) complex that undergoes visible-light-induced SET to form the corresponding highly reactive radical-ion pairs. Subsequently, we show that by tuning the properties of the Lewis acid/base pair, the energy required for SET can be reduced to become thermally accessible.

11.
Angew Chem Int Ed Engl ; 59(27): 10698-10700, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32390271

RESUMO

P-yramids: Tetrahedranes are highly strained molecules, and the all-carbon (CtBu)4 and all-phosphorus species P4 have been known for decades and centuries, respectively. Despite this, the mixed P/C tetrahedranes were unknown until recently when the syntheses of the phosphatetrahedranes P(CtBu)3 and P2 (CtBu)2 were reported by the research groups of Cummins and Wolf.

12.
Angew Chem Int Ed Engl ; 59(49): 22210-22216, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32840947

RESUMO

Frustrated Lewis pairs (FLPs) are well known for their ability to activate small molecules. Recent reports of radical formation within such systems indicate single-electron transfer (SET) could play an important role in their chemistry. Herein, we investigate radical formation upon reacting FLP systems with dihydrogen, triphenyltin hydride, or tetrachloro-1,4-benzoquinone (TCQ) both experimentally and computationally to determine the nature of the single-electron transfer (SET) events; that is, being direct SET to B(C6 F5 )3 or not. The reactions of H2 and Ph3 SnH with archetypal P/B FLP systems do not proceed via a radical mechanism. In contrast, reaction with TCQ proceeds via SET, which is only feasible by Lewis acid coordination to the substrate. Furthermore, SET from the Lewis base to the Lewis acid-substrate adduct may be prevalent in other reported examples of radical FLP chemistry, which provides important design principles for radical main-group chemistry.

13.
Chemistry ; 25(39): 9133-9152, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-30964220

RESUMO

Amine-boranes have gained a lot of attention due to their potential as hydrogen storage materials and their capacity to act as precursors for transfer hydrogenation. Therefore, a lot of effort has gone into the development of suitable transition- and main-group metal catalysts for the dehydrogenation of amine-boranes. During the past decade, new systems started to emerge solely based on p-block elements that promote the dehydrogenation of amine-boranes through hydrogen-transfer reactions, polymerization initiation, and main-group catalysis. In this review, we highlight the development of these p-block based systems for stoichiometric and catalytic amine-borane dehydrogenation and discuss the underlying mechanisms.

14.
Chemistry ; 25(58): 13299-13308, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31497899

RESUMO

The geminal frustrated Lewis pair (FLP) tBu2 PCH2 BPh2 (1) reacts with phenyl-, mesityl-, and tert-butyl azide affording, respectively, six, five, and four-membered rings as isolable products. DFT calculations revealed that the formation of all products proceeds via the six-membered ring structure, which is thermally stable with an N-phenyl group, but rearranges when sterically more encumbered Mes-N3 and tBu-N3 are used. The reaction of 1 with Me3 Si-N3 is believed to follow the same course, yet subsequent N2 elimination occurs to afford a four-membered heterocycle (5), which can be considered as a formal FLP-trimethylsilylnitrene adduct. Compound 5 reacts with hydrochloric acid or tetramethylammonium fluoride and showed frustrated Lewis pair reactivity towards phenylisocyanate.

15.
Chemistry ; 25(63): 14332-14340, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31498934

RESUMO

The [4+2] cycloaddition of 2-(2'-pyridyl)-4,6-diphenyl-λ3 -phosphinine with the highly reactive dienophile hexafluoro-2-butyne has been studied and the first pyridyl-functionalized 1-phosphabarrelene was obtained and structurally characterized. Although monodentate CF3 -1-phosphabarrelenes show only a poor coordination ability, the chelating nature of the novel P,N-hybrid ligand gives access to various transition-metal complexes. Upon irradiation with UV light, the pyridyl-functionalized 1-phosphabarrelene undergoes a rather selective di-π-methane rearrangement in the coordination sphere of the metal center, leading to the formation of a complex based on a hitherto unknown pyridyl-functionalized 5-phosphasemibullvalene derivative. DFT calculations provide first insights into the mechanism of this reaction.

16.
Chemistry ; 25(37): 8769-8779, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-30994944

RESUMO

A series of substituted phosphinines, 1-phosphabarrelenes and 5-phosphasemibullvalenes were synthesized and evaluated for their potential application as ligands in homogeneous catalytic reactions. While their buried volume (%Vbur ) was calculated to get insight into the steric properties, [LNi(CO)3 ] complexes were prepared in order to determine the corresponding Tolman electronic parameter. ETS-NOCV (extended-transition-state natural orbital for chemical valence) calculations on [LAuCl] complexes further allowed an estimation of the σ- and π-contributions to the L-M interaction. AuI coordination compounds of selected examples were prepared and characterized by single crystal X-ray diffraction. Finally, the three classes of PIII compounds were successfully used in the AuI -catalyzed cycloisomerization of N-2-propyn-1-ylbenzamide, showing very good activities and selectivities, which are comparable with the reported data of cationic phosphorus-based gold catalysts.

17.
Eur J Inorg Chem ; 2019(19): 2436-2442, 2019 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31423108

RESUMO

Metal ligand cooperativity (MLC) and frustrated Lewis pair (FLP) chemistry both feature the cooperative action of a Lewis acidic and a Lewis basic site on a substrate. A lot of work has been carried out in the field of FLPs to prevent Lewis adduct formation, which often reduces the FLP reactivity. Parallels are drawn between the two systems by looking at their reactivity with CO2, and we explore the role of steric bulk in preventing dimer formation in MLC systems.

18.
Angew Chem Int Ed Engl ; 58(25): 8362-8366, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-30968535

RESUMO

We herein explore whether tris(aryl)borane Lewis acids are capable of cleaving H2 outside of the usual Lewis acid/base chemistry described by the concept of frustrated Lewis pairs (FLPs). Instead of a Lewis base we use a chemical reductant to generate stable radical anions of two highly hindered boranes: tris(3,5-dinitromesityl)borane and tris(mesityl)borane. NMR spectroscopic characterization reveals that the corresponding borane radical anions activate (cleave) dihydrogen, whilst EPR spectroscopic characterization, supported by computational analysis, reveals the intermediates along the hydrogen activation pathway. This radical-based, redox pathway involves the homolytic cleavage of H2 , in contrast to conventional models of FLP chemistry, which invoke a heterolytic cleavage pathway. This represents a new mode of chemical reactivity for hydrogen activation by borane Lewis acids.

19.
Chemistry ; 24(48): 12669-12677, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29882283

RESUMO

Treatment of the preorganized frustrated Lewis pairs (FLPs) tBu2 PCH2 BPh2 (1) and o-Ph2 P(C6 H4 )BCat (Cat=catechol) (4) with 2-methyloxirane, 2-phenyloxirane and 2-(trifluoromethyl)oxirane resulted in epoxide ring-opening to yield the six- and seven-membered heterocycles 2 a-c and 5 a-c, respectively. These zwitterionic products were characterized spectroscopically, and compounds 2 a, 2 b, 5 a and 5 c were structurally characterized by single-crystal X-ray structure analyses. Based on computational and kinetic studies, the mechanism of these reactions was found to proceed via activation of the epoxide by the Lewis acidic borane moiety followed by nucleophilic attack of the phosphine of a second FLP molecule. The resulting chain-like intermediates afford the final cyclic products by ring-closure and concurrent release of the second equivalent of FLP that behaves as catalyst in this reaction.

20.
Inorg Chem ; 57(20): 12697-12708, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30277076

RESUMO

Chirality at the central element of pentacoordinate systems can be controlled with two identical bidentate ligands. In such cases the topological Levi-Desargues graph for all the Berry pseudorotations (BPR, max. 20) reduces to interconnected inner and outer "circles" that represent the dynamic enantiomer pair. High enough barriers of the BPR crossovers between the two circles is all what is needed to ascertain chiral integrity. This is illustrated computationally and experimentally for the organosilicates 7 and 10 that carry besides a Me (a), Et (b), Ph (c), or F (d) group two bidentate 2-(phenyl)benzo[ b]-thiophene or 2-(phenyl)naphthyl ligands, respectively. The enantiomers of tetraorganosilane precursor 9 could be separated by column chromatography. Their chiral integrity persisted on forming the silicates. CD spectra are reported for 10c. Fluoro derivative 10d is shown to have its electronegative F substituent in an equatorial position, is stable toward hydrolysis, and its enantiomers do not racemize at ambient temperatures, while those of 10c racemize slowly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA