Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Development ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958007

RESUMO

Transcription initiates at the core promoter, which contains distinct core promoter elements. Here, we highlight the complexity of transcriptional regulation by outlining the effect of core promoter-dependent regulation on embryonic development and the proper function of an organism. We demonstrate in vivo the importance of the downstream core promoter element (DPE) in complex heart formation in Drosophila. Pioneering a novel approach utilizing both CRISPR and nascent transcriptomics, we show the effects of mutating a single core promoter element within the natural context. Specifically, we targeted the downstream core promoter element (DPE) of the endogenous tin gene, encoding the Tinman transcription factor, a homologue of human NKX2-5 associated with congenital heart diseases. The 7bp substitution mutation results in massive perturbation of the Tinman regulatory network orchestrating dorsal musculature, manifested as physiological and anatomical changes in the cardiac system, impaired specific activity features and significantly compromised viability of adult flies. Thus, a single motif can have a critical impact on embryogenesis and, in the case of DPE, functional heart formation.

2.
Bioinformatics ; 40(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38407414

RESUMO

MOTIVATION: Prediction and identification of core promoter elements and transcription factor binding sites is essential for understanding the mechanism of transcription initiation and deciphering the biological activity of a specific locus. Thus, there is a need for an up-to-date tool to detect and curate core promoter elements/motifs in any provided nucleotide sequences. RESULTS: Here, we introduce ElemeNT 2023-a new and enhanced version of the Elements Navigation Tool, which provides novel capabilities for assessing evolutionary conservation and for readily evaluating the quality of high-throughput transcription start site (TSS) datasets, leveraging preferential motif positioning. ElemeNT 2023 is accessible both as a fast web-based tool and via command line (no coding skills are required to run the tool). While this tool is focused on core promoter elements, it can also be used for searching any user-defined motif, including sequence-specific DNA binding sites. Furthermore, ElemeNT's CORE database, which contains predicted core promoter elements around annotated TSSs, is now expanded to cover 10 species, ranging from worms to human. In this applications note, we describe the new workflow and demonstrate a case study using ElemeNT 2023 for core promoter composition analysis of diverse species, revealing motif prevalence and highlighting evolutionary insights. We discuss how this tool facilitates the exploration of uncharted transcriptomic data, appraises TSS quality, and aids in designing synthetic promoters for gene expression optimization. Taken together, ElemeNT 2023 empowers researchers with comprehensive tools for meticulous analysis of sequence elements and gene expression strategies. AVAILABILITY AND IMPLEMENTATION: ElemeNT 2023 is freely available at https://www.juven-gershonlab.org/resources/element-v2023/. The source code and command line version of ElemeNT 2023 are available at https://github.com/OritAdato/ElemeNT. No coding skills are required to run the tool.


Assuntos
Software , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , Sítio de Iniciação de Transcrição
3.
PLoS Comput Biol ; 17(8): e1009256, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383743

RESUMO

Metazoan core promoters, which direct the initiation of transcription by RNA polymerase II (Pol II), may contain short sequence motifs termed core promoter elements/motifs (e.g. the TATA box, initiator (Inr) and downstream core promoter element (DPE)), which recruit Pol II via the general transcription machinery. The DPE was discovered and extensively characterized in Drosophila, where it is strictly dependent on both the presence of an Inr and the precise spacing from it. Since the Drosophila DPE is recognized by the human transcription machinery, it is most likely that some human promoters contain a downstream element that is similar, though not necessarily identical, to the Drosophila DPE. However, only a couple of human promoters were shown to contain a functional DPE, and attempts to computationally detect human DPE-containing promoters have mostly been unsuccessful. Using a newly-designed motif discovery strategy based on Expectation-Maximization probabilistic partitioning algorithms, we discovered preferred downstream positions (PDP) in human promoters that resemble the Drosophila DPE. Available chromatin accessibility footprints revealed that Drosophila and human Inr+DPE promoter classes are not only highly structured, but also similar to each other, particularly in the proximal downstream region. Clustering of the corresponding sequence motifs using a neighbor-joining algorithm strongly suggests that canonical Inr+DPE promoters could be common to metazoan species. Using reporter assays we demonstrate the contribution of the identified downstream positions to the function of multiple human promoters. Furthermore, we show that alteration of the spacing between the Inr and PDP by two nucleotides results in reduced promoter activity, suggesting a spacing dependency of the newly discovered human PDP on the Inr. Taken together, our strategy identified novel functional downstream positions within human core promoters, supporting the existence of DPE-like motifs in human promoters.


Assuntos
Genoma Humano , Regiões Promotoras Genéticas , Algoritmos , Animais , Sequência de Bases , Biologia Computacional , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Modelos Genéticos , Modelos Estatísticos , RNA Polimerase II/metabolismo , Especificidade da Espécie , TATA Box , Transcrição Gênica
4.
Biol Proced Online ; 22: 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684853

RESUMO

BACKGROUND: The generation of point mutations is a major tool for evaluating the roles of specific nucleotides or amino acids within the regulatory or functional landscape. However, examination of these mutations in vivo requires the generation of animals carrying only the relevant point mutations at the endogenous genomic loci, which is technically challenging. The CRISPR-Cas9 based genome editing greatly facilitates the generation of such genetically modified animals; however, most of the described methods use double-strand DNA (dsDNA) as the donor template. The dsDNA plasmids frequently undergo undesired integration events into the targeted genomic locus. The use of a single-strand oligodeoxynucleotide (ssODN) as the donor template prevents this complication and is therefore the preferred choice for introducing point mutations, as well as short sequences such as protein tags. RESULTS: We successfully applied the CRISPR-based white co-conversion strategy with a ssODN template, instead of the originally described dsDNA plasmid, to create genetically modified Drosophila melanogaster strains. We used the technique to easily introduce point mutations in two distinct chromosomes. Using the generated flies, we were able to demonstrate the in vivo importance of the respective mutations. For the Nucleoporin107 (Nup107) gene, the 1090G > A mutation was confirmed to affect ovarian development, while for the tinman (tin) gene, the regulatory role of the downstream core promoter element (DPE) was demonstrated within the developing Drosophila melanogaster embryo. CONCLUSIONS: The described approach has facilitated the successful generation of point mutations in two different chromosomes, by two different labs. Distinct phenotypes associated with the newly-generated genotype were identified, thus exemplifying the importance of investigating the in vivo role of specific nucleotides. In addition, detailed guidelines, recommendations and crossing schemes are provided in order to support the generation of additional genetically modified animals by the scientific community.

5.
J Virol ; 88(9): 5079-86, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574392

RESUMO

UNLABELLED: The two human neurotropic alphaherpesviruses varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV1) both establish latency in sensory ganglia. Human trigeminal ganglia are known to frequently harbor both viruses, and there is evidence to suggest the presence of both VZV and HSV1 DNA in the same neuron. We ask here whether VZV and HSV1 can exclude themselves and each other and whether they can productively infect the same cells in human neurons and human foreskin fibroblasts (HFF). Simultaneous infection (coinfection) or consecutive infection (superinfection) was assessed using cell-free HSV1 and VZV expressing fluorescent reporter proteins. Automated analysis was carried out to detect singly and dually infected cells. We demonstrate that VZV and HSV1 both display efficient superinfection exclusion (SE) in HFF, with each virus excluding either itself or the other virus. While SE also occurred in neurons, it was with much lower efficiency. Both alphaherpesviruses productively infected the same neurons, whether applied simultaneously or even consecutively, albeit at lower frequencies. IMPORTANCE: Superinfection exclusion by VZV for itself or the related neurotropic alphaherpesvirus HSV1 has been studied here for the first time. We find that while these viruses display classic SE in fibroblasts, SE is less efficient for both HSV1 and VZV in human neurons. The ability of multiple VZV strains to productively infect the same neurons has important implications in terms of recombination of both wild-type and vaccine strains in patients.


Assuntos
Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 3/fisiologia , Neurônios/virologia , Interferência Viral , Células Cultivadas , Fibroblastos/virologia , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 3/crescimento & desenvolvimento , Humanos
6.
J Virol ; 86(6): 3211-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22238301

RESUMO

Pluripotent human stem cells are a powerful tool for the generation of differentiated cells that can be used for the study of human disease. We recently demonstrated that neurons derived from pluripotent human embryonic stem cells (hESC) can be infected by the highly host-restricted human alphaherpesvirus varicella-zoster virus (VZV), permitting the interaction of VZV with neurons to be readily evaluated in culture. In the present study, we examine whether pluripotent hESC and neural progenitors at intermediate stages of differentiation are permissive for VZV infection. We demonstrate here that VZV infection is blocked in naïve hESC. A block to VZV replication is also seen when a bacterial artificial chromosome (BAC) containing the VZV genome is transfected into hESC. In contrast, related alphaherpesviruses herpes simplex virus 1 (HSV-1) and pseudorabies virus (PrV) productively infect naïve hESC in a cell-free manner, and PrV replicates from a BAC transfected into hESC. Neurons differentiate from hESC via neural progenitor intermediates, as is the case in the embryo. The first in vitro stage at which permissiveness of hESC-derived neural precursors to VZV replication is observed is upon formation of "neurospheres," immediately after detachment from the inductive stromal feeder layer. These findings suggest that hESC may be useful in deciphering the yet enigmatic mechanisms of specificity of VZV infection and replication.


Assuntos
Células-Tronco Embrionárias/virologia , Herpesvirus Humano 3/fisiologia , Neurônios/virologia , Células-Tronco Pluripotentes/virologia , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Herpesvirus Humano 3/genética , Humanos , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Replicação Viral
7.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398300

RESUMO

Transcription is initiated at the core promoter, which confers specific functions depending on the unique combination of core promoter elements. The downstream core promoter element (DPE) is found in many genes related to heart and mesodermal development. However, the function of these core promoter elements has thus far been studied primarily in isolated, in vitro or reporter gene settings. tinman (tin) encodes a key transcription factor that regulates the formation of the dorsal musculature and heart. Pioneering a novel approach utilizing both CRISPR and nascent transcriptomics, we show that a substitution mutation of the functional tin DPE motif within the natural context of the core promoter results in a massive perturbation of Tinman's regulatory network orchestrating dorsal musculature and heart formation. Mutation of endogenous tin DPE reduced the expression of tin and distinct target genes, resulting in significantly reduced viability and an overall decrease in adult heart function. We demonstrate the feasibility and importance of characterizing DNA sequence elements in vivo in their natural context, and accentuate the critical impact a single DPE motif has during Drosophila embryogenesis and functional heart formation.

8.
J Virol ; 85(13): 6220-33, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525353

RESUMO

Study of the human neurotrophic herpesvirus varicella-zoster virus (VZV) and of its ability to infect neurons has been severely limited by strict viral human tropism and limited availability of human neurons for experimentation. Human embryonic stem cells (hESC) can be differentiated to all the cell types of the body including neurons and are therefore a potentially unlimited source of human neurons to study their interactions with human neurotropic viruses. We report here reproducible infection of hESC-derived neurons by cell-associated green fluorescent protein (GFP)-expressing VZV. hESC-derived neurons expressed GFP within 2 days after incubation with mitotically inhibited MeWo cells infected with recombinant VZV expressing GFP as GFP fusions to VZV proteins or under an independent promoter. VZV infection was confirmed by immunostaining for immediate-early and viral capsid proteins. Infection of hESC-derived neurons was productive, resulting in release into the medium of infectious virions that appeared fully assembled when observed by electron microscopy. We also demonstrated, for the first time, VZV infection of axons and retrograde transport from axons to neuronal cell bodies using compartmented microfluidic chambers. The use of hESC-derived human neurons in conjunction with fluorescently tagged VZV shows great promise for the study of VZV neuronal infection and axonal transport and has potential for the establishment of a model for VZV latency in human neurons.


Assuntos
Axônios/virologia , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Herpesvirus Humano 3/patogenicidade , Neurônios/virologia , Transporte Axonal , Axônios/ultraestrutura , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiologia , Humanos , Microscopia Eletrônica de Transmissão , Neurônios/ultraestrutura , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura , Liberação de Vírus
9.
Front Cell Dev Biol ; 9: 666508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568311

RESUMO

The development of multicellular organisms and the uniqueness of each cell are achieved by distinct transcriptional programs. Multiple processes that regulate gene expression converge at the core promoter region, an 80 bp region that directs accurate transcription initiation by RNA polymerase II (Pol II). In recent years, it has become apparent that the core promoter region is not a passive DNA component, but rather an active regulatory module of transcriptional programs. Distinct core promoter compositions were demonstrated to result in different transcriptional outputs. In this mini-review, we focus on the role of the core promoter, particularly its downstream region, as the regulatory hub for developmental genes. The downstream core promoter element (DPE) was implicated in the control of evolutionarily conserved developmental gene regulatory networks (GRNs) governing body plan in both the anterior-posterior and dorsal-ventral axes. Notably, the composition of the basal transcription machinery is not universal, but rather promoter-dependent, highlighting the importance of specialized transcription complexes and their core promoter target sequences as key hubs that drive embryonic development, differentiation and morphogenesis across metazoan species. The extent of transcriptional activation by a specific enhancer is dependent on its compatibility with the relevant core promoter. The core promoter content also regulates transcription burst size. Overall, while for many years it was thought that the specificity of gene expression is primarily determined by enhancers, it is now clear that the core promoter region comprises an important regulatory module in the intricate networks of developmental gene expression.

10.
Aging Cell ; 20(11): e13499, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34687484

RESUMO

Neural stem cells (NSCs) in the adult and aged brain are largely quiescent, and require transcriptional reprogramming to re-enter the cell cycle. However, the mechanisms underlying these changes and how they are altered with age remain undefined. Here, we identify the chromatin accessibility differences between primary neural stem/progenitor cells in quiescent and activated states. These distinct cellular states exhibit shared and unique chromatin profiles, both associated with gene regulation. Accessible chromatin states specific to activation or quiescence are active enhancers bound by key pro-neurogenic and quiescence factors. In contrast, shared sites are enriched for core promoter elements associated with translation and metabolism. Unexpectedly, through integrated analysis, we find that many sites that become accessible during NSC activation are linked to gene repression and associated with pro-quiescence factors, revealing a novel mechanism that may preserve quiescence re-entry. Furthermore, we report that in aged NSCs, chromatin regions associated with metabolic and transcriptional functions bound by key pro-quiescence transcription factors lose accessibility, suggesting a novel mechanism of age-associated NSC dysfunction. Together, our findings reveal how accessible chromatin states regulate the transcriptional switch between NSC quiescence and activation, and how this switch is affected with age.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Senescência Celular/genética , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Neurais/metabolismo , Ativação Transcricional , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Histonas/genética , Histonas/metabolismo , Camundongos , Neurogênese/genética , Regiões Promotoras Genéticas/genética , RNA-Seq/métodos
11.
PLoS One ; 14(4): e0215695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30998799

RESUMO

The regulation of transcription initiation is critical for developmental and cellular processes. RNA polymerase II (Pol II) is recruited by the basal transcription machinery to the core promoter where Pol II initiates transcription. The core promoter encompasses the region from -40 to +40 bp relative to the +1 transcription start site (TSS). Core promoters may contain one or more core promoter motifs that confer specific properties to the core promoter, such as the TATA box, initiator (Inr) and motifs that are located downstream of the TSS, namely, motif 10 element (MTE), the downstream core promoter element (DPE) and the Bridge, a bipartite core promoter element. We had previously shown that Caudal, an enhancer-binding homeodomain transcription factor and a key regulator of the Hox gene network, is a DPE-specific activator. Interestingly, pair-rule proteins have been implicated in enhancer-promoter communication at the engrailed locus. Fushi tarazu (Ftz) is an enhancer-binding homeodomain transcription factor encoded by the ftz pair-rule gene. Ftz works in concert with its co-factor, Ftz-F1, to activate transcription. Here, we examined whether Ftz and Ftz-F1 activate transcription with a preference for a specific core promoter motif. Our analysis revealed that similarly to Caudal, Ftz and Ftz-F1 activate the promoter containing a TATA box mutation to significantly higher levels than the promoter containing a DPE mutation, thus demonstrating a preference for the DPE motif. We further discovered that Ftz target genes are enriched for a combination of functional downstream core promoter elements that are conserved among Drosophila species. Thus, the unique combination (Inr, Bridge and DPE) of functional downstream core promoter elements within Ftz target genes highlights the complexity of transcriptional regulation via the core promoter in the transcription of different developmental gene regulatory networks.


Assuntos
Proteínas de Drosophila/metabolismo , Fatores de Transcrição Fushi Tarazu/metabolismo , Motivos de Nucleotídeos/fisiologia , Elementos de Resposta/fisiologia , TATA Box/fisiologia , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Fatores de Transcrição Fushi Tarazu/genética
12.
Transcription ; 6(3): 41-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26226151

RESUMO

Core promoter elements play a pivotal role in the transcriptional output, yet they are often detected manually within sequences of interest. Here, we present 2 contributions to the detection and curation of core promoter elements within given sequences. First, the Elements Navigation Tool (ElemeNT) is a user-friendly web-based, interactive tool for prediction and display of putative core promoter elements and their biologically-relevant combinations. Second, the CORE database summarizes ElemeNT-predicted core promoter elements near CAGE and RNA-seq-defined Drosophila melanogaster transcription start sites (TSSs). ElemeNT's predictions are based on biologically-functional core promoter elements, and can be used to infer core promoter compositions. ElemeNT does not assume prior knowledge of the actual TSS position, and can therefore assist in annotation of any given sequence. These resources, freely accessible at http://lifefaculty.biu.ac.il/gershon-tamar/index.php/resources, facilitate the identification of core promoter elements as active contributors to gene expression.


Assuntos
Biologia Computacional , Regiões Promotoras Genéticas , Software , Animais , Bases de Dados de Compostos Químicos , Drosophila melanogaster , Sítio de Iniciação de Transcrição
13.
J Virol Methods ; 206: 128-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24925132

RESUMO

The research laboratory generation of free Varicella-Zoster Virus (VZV) from cultured yields results relatively low titers, with the result that most study of VZV infection utilizes cell-associated infection. However, important aspects of VZV-cell interaction, such as the entry mechanism and superinfection exclusion have not yet been studied in detail, in part due to the difficulty in obtaining a high titer cell free virus. Here, a method to generate relatively high-titer cell-free VZV, based on a combination of previously published techniques and subsequent concentration is described. VZV-infected cells are disrupted, sonicated and clarified by centrifugation. The cell-free virus in the supernatant is then concentrated to yield up to 10(5)PFU/ml. The cell debris pellet, which contains up to 10(6)PFU/ml can also be used for non cell-associated infection. Magnetic nanoparticles available commercially can be used to further enhance infection by cell-free-VZV. The tools described here hold promise for better understanding of important aspects of VZV-cell interactions such as entry and latency.


Assuntos
Herpesvirus Humano 3/isolamento & purificação , Vírion/isolamento & purificação , Virologia/métodos , Herpesvirus Humano 3/genética , Vírion/genética
14.
Nucleus ; 5(4): 298-303, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482118

RESUMO

Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II, which initiates transcription at the core promoter. The dorsal-ventral gene regulatory network (GRN) includes multiple genes that are activated by different nuclear concentrations of the Dorsal transcription factor along the dorsal-ventral axis. Downstream core promoter element (DPE)-containing genes are conserved and highly prevalent among Dorsal target genes. Moreover, the DPE motif is functional in multiple Dorsal target genes, as mutation of the DPE results in the loss of transcriptional activity. Furthermore, analysis of hybrid enhancer-promoter constructs reveals that the core promoter composition plays a pivotal role in the transcriptional output. Importantly, we provide in vivo evidence that expression driven by the homeotic Antennapedia P2 promoter during Drosophila embryogenesis is dependent on the DPE. Taken together, we propose that transcriptional regulation results from the interplay between enhancers and core promoter composition, thus establishing a novel dimension in developmental GRNs.


Assuntos
Drosophila/embriologia , Regiões Promotoras Genéticas/genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Genes Controladores do Desenvolvimento/genética , Genes Controladores do Desenvolvimento/fisiologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
15.
Virology ; 443(2): 285-93, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23769240

RESUMO

Varicella Zoster virus (VZV) productively infects humans causing varicella upon primary infection and herpes zoster upon reactivation from latency in neurons. In vitro studies using cell-associated VZV infection have demonstrated productive VZV-infection, while a few recent studies of human neurons derived from stem cells incubated with cell-free, vaccine-derived VZV did not result in generation of infectious virus. In the present study, 90%-pure human embryonic stem cell-derived neurons were incubated with recombinant cell-free pOka-derived virus made with an improved method or VZV vaccine. We found that cell-free pOka and vOka at higher multiplicities of infection elicited productive infection in neurons followed by spread of infection, cytopathic effect and release of infectious virus into the medium. These results further validate the use of this unlimited source of human neurons for studying unexplored aspects of VZV interaction with neurons such as entry, latency and reactivation.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Herpes Zoster/virologia , Herpesvirus Humano 3/patogenicidade , Neurônios/virologia , Animais , Linhagem Celular , Células Cultivadas , Vacina contra Varicela , Chlorocebus aethiops , Células-Tronco Embrionárias/virologia , Herpesvirus Humano 3/fisiologia , Humanos , Neurônios/citologia , Células Vero , Latência Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA