Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chemistry ; 29(24): e202204066, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36607705

RESUMO

The fluorine atom is a powerful, yet enigmatic influence on chemical reactions. True to form, fluorine was recently discovered to effect diastereodivergence in an enantioselective aza-Henry reaction, resulting in a very rare case of syn-ß-amino nitroalkane products. More bewildering was the observation of an apparent hierarchy of substituents within this substrate-controlled behavior: Ph>F>alkyl. These cases have now been examined comprehensively by computational methods, including both non-fluorinated and α-fluoro nitronate additions to aldimines catalyzed by a chiral bis(amidine) [BAM] proton complex. This study revealed the network of non-covalent interactions that dictate anti- (α-aryl) versus syn-selectivity (α-alkyl) using α-fluoronitronate nucleophiles, and an underlying secondary orbital interaction between fluorine and the activated azomethine.

2.
J Org Chem ; 86(17): 11835-11844, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34369775

RESUMO

Molecular acid-base properties are core to understanding chemical systems and the prediction of reactivity. This axiom holds for cyclopropenium ions in terms of their broad use as (organo)catalysts, ligands, redox-flow batteries, and applications in materials sciences. In view of this significant status, and with it, the critical importance of acidity, we disclose in this report the first comprehensive computational study of the pKa values of cyclopropenium ions employing a subset of 70 structurally diverse cyclopropenium derivatives, density functional computations, and Hammett linear free-energy relationships. Capitalizing upon these computed findings, and with an eye toward greenhouse gas trapping, we further document the timely use of a cyclopropenium-cyclopropenylidene coupled platform for CO2 capture and light-triggered release.

3.
J Org Chem ; 86(5): 4171-4181, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33626274

RESUMO

Hydroamidation of carbon-carbon double bonds is an attractive strategy for installing nitrogen functionality into molecular scaffolds and, with it, increasing molecular complexity. To date, metal-based approaches have dominated this area of chemical synthesis, despite the drawbacks of air and moisture sensitivity, limited functional group tolerance, toxicity, and/or high cost often associated with using metals. Here, in offering an alternative solution, we disclose an operationally simple, metal-free, one-pot, regioselective, multicomponent synthetic procedure for the hydroamidation of carbon-carbon double bonds. This method features mild reaction conditions and utilizes isocyanides and vinyl ethers for the rapid and modular synthesis of privileged α-oxygenated amide scaffolds. In unraveling the mechanistic underpinning of this non-metal-based reactivity, we present kinetic solvent isotope effect studies, variable time normalization analysis, and density functional theory computations offering insight into the mechanism of this multistep catalytic hydroamidation process.


Assuntos
Carbono , Metais , Catálise , Éteres , Nitrogênio
4.
J Org Chem ; 86(21): 15606-15617, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34669416

RESUMO

A pair of chiral bis(amidine) [BAM] proton complexes provide reagent (catalyst)-controlled, highly diastereo- and enantioselective direct aza-Henry reactions leading to α-alkyl-substituted α,ß-diamino esters. A C2-symmetric ligand provides high anti-selectivity, while a nonsymmetric congener exhibits syn-selectivity in this example of diastereodivergent, enantioselective catalysis. A detailed computational analysis is reported for the first time, one that supports distinct models for selectivity resulting from the more hindered binding cavity of the C1-symmetric ligand. Binding in this congested pocket accommodates four hydrogen bond contacts among ligands and substrates, ultimately favoring a pre-syn arrangement highlighted by pyridinium-azomethine activation and quinolinium-nitronate activation. The complementary transition states reveal a wide range of alternatives. Comparing the C1- and C2-symmetric catalysts highlights distinct electrophile binding orientations despite their common hydrogen bond donor-acceptor features. Among the factors driving unusual high syn-diastereoselection are favorable dispersion forces that leverage the anthracenyl substituent of the C1-symmetric ligand.


Assuntos
Ácidos , Ésteres , Catálise , Indicadores e Reagentes , Estereoisomerismo
5.
J Am Chem Soc ; 142(34): 14710-14724, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32786786

RESUMO

Recently, our group reported that enone and ketone functional groups, upon photoexcitation, can direct site-selective sp3 C-H fluorination in terpenoid derivatives. How this transformation actually occurred remained mysterious, as a significant number of mechanistic possibilities came to mind. Herein, we report a comprehensive study describing the reaction mechanism through kinetic studies, isotope-labeling experiments, 19F NMR, electrochemical studies, synthetic probes, and computational experiments. To our surprise, the mechanism suggests intermolecular hydrogen atom transfer (HAT) chemistry is at play, rather than classical Norrish hydrogen atom abstraction as initially conceived. What is more, we discovered a unique role for photopromoters such as benzil and related compounds that necessitates their chemical transformation through fluorination in order to be effective. Our findings provide documentation of an unusual form of directed HAT and are of crucial importance for defining the necessary parameters for the development of future methods.

6.
J Org Chem ; 85(15): 10110-10117, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633515

RESUMO

The site-selective introduction of an oxygen atom into an organic molecule, without the assistance of metals, is a useful transformation, though understanding the mechanistic underpinning of such a process is oftentimes a challenging task. In exploring this chemical space and in building upon experimental precedents, we have utilized computational tools to delineate the mechanistic details of site-selective oxygen atom insertion into a p-quinone methide C(sp3)-C(sp2) bond. To this end, several different reaction pathways for oxygen atom insertion were explored-each encompassing a unique element qualifying the respective pathway as being more or less feasible. The findings of these investigations revealed several features that were vital to this reactivity, including the formation of a dimeric intermediate, interconversion between ground- and excited-state species, and strain. Notably, the latter finding adds to the portfolio of strain-release-driven reactions that have emerged as popular methods to achieve otherwise difficult chemical transformations.

7.
J Org Chem ; 85(2): 585-593, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31790584

RESUMO

Pyranylation and glycosylation are pivotal for accessing a myriad of natural products, pharmaceuticals, and drug candidates. Catalytic approaches for enabling these transformations are of utmost importance and integral to advancing this area of synthesis. In exploring this chemical space, a combined experimental and computational mechanistic study of pyranylation and 2-deoxygalactosylation catalyzed by a cationic thiourea organocatalyst is reported. To this end, a thiourea-cyclopropenium organocatalyst was employed as a model system in combination with an arsenal of mechanistic techniques, including 13C kinetic isotope effect experiments, deuterated labeling studies, variable-temperature 1H NMR spectroscopy, and density functional theory calculations. From these studies, two distinct reaction pathways were identified for this transformation corresponding to either dual hydrogen bond (H-bond) activation or Brønsted acid catalysis. The former involving thiourea orchestrated bifurcated hydrogen bonding proceeded in an asynchronous concerted fashion. In contrast, the latter stepwise mechanism involving Brønsted acid catalysis hinged upon the formation of an oxocarbenium intermediate accompanied by subsequent alcohol addition.

8.
J Org Chem ; 83(22): 13973-13980, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30352160

RESUMO

An integral part of modern organocatalysis is the development and application of thiourea catalysts. Here, as part of our program aimed at developing cyclopropenium catalysts, the synthesis of a thiourea-cyclopropenium organocatalyst with both cationic hydrogen-bond donor and electrostatic character is reported. The utility of the this thiourea organocatalyst is showcased in pyranylation reactions employing phenols, primary, secondary, and tertiary alcohols under operationally simple and mild reaction conditions for a broad substrate scope. The addition of benzoic acid as a co-catalyst facilitating cooperative Brønsted acid catalysis was found to be valuable for reactions involving phenols and higher substituted alcohols. Mechanistic investigations, including kinetic and 1H NMR binding studies in conjunction with density function theory calculations, are described that collectively support a Brønsted acid mode of catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA