Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(1): 173-181.e10, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815782

RESUMO

BACKGROUND: Prior studies of peanut sublingual immunotherapy (SLIT) have suggested a potential advantage with younger age at treatment initiation. OBJECTIVE: We studied the safety and efficacy of SLIT for peanut allergy in 1- to 4-year-old children. METHODS: Peanut-allergic 1- to 4-year-old children were randomized to receive 4 mg peanut SLIT versus placebo. Desensitization was assessed by double-blind, placebo-controlled food challenge (DBPCFC) after 36 months of treatment. Participants desensitized to at least 443 mg peanut protein discontinued therapy for 3 months and then underwent DBPCFC to assess for remission. Biomarkers were measured at baseline and longitudinally during treatment. RESULTS: Fifty participants (25 peanut SLIT, 25 placebo) with a median age of 2.4 years were enrolled across 2 sites. The primary end point of desensitization was met with actively treated versus placebo participants having a significantly greater median cumulative tolerated dose (4443 mg vs 143 mg), higher likelihood of passing the month 36 DBPCFC (60% vs 0), and higher likelihood of demonstrating remission (48% vs 0). The highest rate of desensitization and remission was seen in 1- to 2-year-olds, followed by 2- to 3-year-olds and 3- to 4-year-olds. Longitudinal changes in peanut skin prick testing, peanut-specific IgG4, and peanut-specific IgG4/IgE ratio were seen in peanut SLIT but not placebo participants. Oropharyngeal itching was more commonly reported by peanut SLIT than placebo participants. Skin, gastrointestinal, upper respiratory, lower respiratory, and multisystem adverse events were similar between treatment groups. CONCLUSION: Peanut SLIT safely induces desensitization and remission in 1- to 4-year-old children, with improved outcomes seen with younger age at initiation.


Assuntos
Hipersensibilidade a Amendoim , Imunoterapia Sublingual , Humanos , Pré-Escolar , Lactente , Arachis , Dessensibilização Imunológica/efeitos adversos , Administração Sublingual , Hipersensibilidade a Amendoim/terapia , Hipersensibilidade a Amendoim/etiologia , Alérgenos , Método Duplo-Cego , Imunoglobulina G , Administração Oral
2.
Artigo em Inglês | MEDLINE | ID: mdl-38670234

RESUMO

BACKGROUND: The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized Collaborative Cross strain CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, in contrast to C3H/HeJ (C3H) mice. OBJECTIVE: This study aimed to determine the genetic basis of orally induced anaphylaxis to peanut in CC027 mice. METHODS: A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 mice and 5 additional Collaborative Cross strains. RESULTS: Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis and 4% having severe anaphylaxis. There were 8 genetic loci associated with variation in response to peanut challenge-6 associated with anaphylaxis (temperature decrease) and 2 associated with peanut-specific IgE levels. There were 2 major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis gene. Consistent with described functions of Themis, we found that CC027 mice have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. CONCLUSIONS: Our results demonstrate a key role for Themis in the orally reactive CC027 mouse model of peanut allergy.

3.
Allergy ; 79(2): 432-444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37804001

RESUMO

BACKGROUND: Environmental exposure to peanut through non-oral routes is a risk factor for peanut allergy. Early-life exposure to air pollutants, including particulate matter (PM), is associated with sensitization to foods through unknown mechanisms. We investigated whether PM promotes sensitization to environmental peanut and the development of peanut allergy in a mouse model. METHODS: C57BL/6J mice were co-exposed to peanut and either urban particulate matter (UPM) or diesel exhaust particles (DEP) via the airways and assessed for peanut sensitization and development of anaphylaxis following peanut challenge. Peanut-specific CD4+ T helper (Th) cell responses were characterized by flow cytometry and Th cytokine production. Mice lacking select innate immune signaling genes were used to study mechanisms of PM-induced peanut allergy. RESULTS: Airway co-exposure to peanut and either UPM- or DEP-induced systemic sensitization to peanut and anaphylaxis following peanut challenge. Exposure to UPM or DEP triggered activation and migration of lung dendritic cells to draining lymph nodes and induction of peanut-specific CD4+ Th cells. UPM- and DEP-induced distinct Th responses, but both stimulated expansion of T follicular helper (Tfh) cells essential for peanut allergy development. MyD88 signaling was critical for UPM- and DEP-induced peanut allergy, whereas TLR4 signaling was dispensable. DEP-induced peanut allergy and Tfh-cell differentiation depended on IL-1 but not IL-33 signaling, whereas neither cytokine alone was necessary for UPM-mediated sensitization. CONCLUSION: Environmental co-exposure to peanut and PM induces peanut-specific Tfh cells and peanut allergy in mice.


Assuntos
Anafilaxia , Hipersensibilidade a Amendoim , Camundongos , Animais , Camundongos Endogâmicos C57BL , Poeira , Citocinas/metabolismo , Material Particulado/efeitos adversos
4.
Clin Exp Allergy ; 53(9): 930-940, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37437951

RESUMO

BACKGROUND: Indoor dust (ID) is a source of peanut proteins and immunostimulatory adjuvants (e.g. LPS) that can promote airway sensitization to peanut. We aimed to determine whether a single airway exposure to peanut plus adjuvant is sufficient to prevent oral tolerance. METHODS: To determine the effect of a single priming event, C57BL/6J mice were exposed once to peanut plus adjuvant through the airway, followed by either airway or low-dose oral exposure to peanut, and assessed for peanut allergy. Oral tolerance was investigated by feeding high-dose peanut followed by airway sensitization. To determine whether a single priming could prevent oral tolerance, the high-dose peanut regimen was applied after a single airway exposure to peanut plus adjuvant. Peanut-specific IgE and IgG1 were quantified, and mice were challenged to peanut to assess allergy. Peanut-specific CD4+ memory T cells (CD4+ TCRß+ CD44hi CD154+ ) were quantified in mediastinal lymph nodes following airway priming. RESULTS: Mice co-exposed to peanut with LPS or ID through the airway were primed to develop peanut allergy after subsequent low-dose oral or airway exposures to peanut. Oral tolerance was induced in mice fed high-dose peanut prior to airway sensitization. In contrast, mice fed high-dose peanut following a single airway exposure to peanut plus adjuvant led to allergy. Peanut-specific CD4+ memory T cells were detected as early as 7 days after the single airway priming with peanut plus adjuvant, however, delaying peanut feeding even 1 day following priming led to allergy, whereas peanut feeding the same day as priming led to tolerance. CONCLUSIONS: A single airway exposure to peanut plus adjuvant is sufficient to prime the immune system to develop allergy following subsequent high-dose oral exposure. These results highlight the importance of introducing peanut as early as possible to prevent sensitization through a non-oral priming event.


Assuntos
Arachis , Hipersensibilidade a Amendoim , Camundongos , Animais , Citocinas/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos , Poeira , Tolerância Imunológica , Alérgenos
5.
Curr Allergy Asthma Rep ; 23(8): 427-433, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37227666

RESUMO

PURPOSE OF REVIEW: Many factors have been reported to contribute to the development of food allergy. Here, we summarize the role of environmental exposure to foods as a major risk factor for developing food allergy. RECENT FINDINGS: Peanut proteins are detectable and biologically active in household environments, where infants spend a majority of their time, providing an environmental source of allergen exposure. Recent evidence from clinical studies and mouse models suggests both the airway and skin are routes of exposure that lead to peanut sensitization. Environmental exposure to peanut has been clearly associated with the development of peanut allergy, although other factors such as genetic predisposition, microbial exposures, and timing of oral feeding of allergens also likely contribute. Future studies should more comprehensively assess the contributions of each of these factors for a variety of food allergens to provide more clear targets for prevention of food allergy.


Assuntos
Hipersensibilidade Alimentar , Hipersensibilidade a Amendoim , Humanos , Animais , Camundongos , Hipersensibilidade Alimentar/epidemiologia , Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/prevenção & controle , Alimentos , Fatores de Risco , Hipersensibilidade a Amendoim/etiologia , Hipersensibilidade a Amendoim/prevenção & controle , Exposição Ambiental/efeitos adversos , Arachis/efeitos adversos
6.
J Allergy Clin Immunol ; 150(6): 1476-1485.e4, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35839842

RESUMO

BACKGROUND: Circulating IgE and subsequent severe allergic reactions to peanut are sustained and propagated by recall of peanut allergen-specific memory B cells. OBJECTIVES: This study aimed to determine whether targeting mouse and human CD22 on peanut-specific memory B cells induces tolerance to peanut allergens. METHODS: Siglec-engaging tolerance-inducing antigenic liposomes (STALs) codisplaying peanut allergens (Ara h 1, Ara h 2, or Ara h 3) and high-affinity CD22 ligand (CD22L-STALs) were employed in various mouse models (BALB/cJ, C57BL/6, human CD22 transgenic, and NSG) of peanut allergy. To investigate memory B cells, a conferred memory model was used in which splenocytes from peanut-sensitized mice were transferred into naive animals. Reconstituted mice received either CD22L-STALs or an immunogenic liposome control, followed by a peanut allergen boost and later a challenge with individual peanut allergens. To assess the effects of CD22L-STALs on human B cells, PBMCs were injected into NSG mice, followed by administration of human CD22L-STALs (hCD22L-STALs) and later a whole peanut extract boost. Blood was collected to quantify WPE- and Ara h 1-, 2-, and 3-specific immunoglobulins. RESULTS: Mouse CD22L-STALs (mCD22L-STALs) significantly suppressed systemic memory to Ara h 1, Ara h 2, and Ara h 3 in BALB/cJ and C57BL/6 mice, as demonstrated by reduced allergen-specific IgE, IgG1, and anaphylaxis on challenge. Importantly, 2 doses of mCD22L-STALs led to prolonged tolerance for at least 3 months. hCD22L-STALs displayed similar suppression in mice expressing human CD22 on B cells. Finally, human B cells were tolerized in vivo in NSG mice by hCD22L-STALs. CONCLUSIONS: Antigen-specific exploitation of CD22 on memory B cells can induce systemic immune tolerance.


Assuntos
Alérgenos , Arachis , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Células B de Memória , Tolerância Imunológica , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
7.
J Allergy Clin Immunol ; 150(5): 1144-1153, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35716952

RESUMO

BACKGROUND: Oral immunotherapy (OIT) leads to suppression of mast cell and basophil degranulation along with changes in the adaptive immune response. OBJECTIVES: This study aimed to determine how rapidly these effects occur during OIT and more broadly, the kinetics of basophil and mast cell suppression throughout the course of therapy. METHODS: Twenty participants, age 4 to 12 years, were enrolled in a peanut OIT trial and assessed for desensitization and sustained unresponsiveness after 9 months of therapy. Blood was collected 5 times in the first month and then intermittently throughout to quantify immunoglobulins and assess basophil activation by CD63, CD203c, and phosphorylated SYK (pSYK). RESULTS: Twelve of 16 participants that completed the trial were desensitized after OIT, with 9 achieving sustained unresponsiveness after discontinuing OIT for 4 weeks. Basophil hyporesponsiveness, defined by lower CD63 expression, was detected as early as day 90. pSYK was correlated with CD63 expression, and there was a significant decrease in pSYK by day 250. CD203c expression remained unchanged throughout therapy. Interestingly, although basophil activation was decreased across the cohort during OIT, basophil activation did not correlate with individual clinical outcomes. Serum peanut-specific IgG4 and IgA increased throughout therapy, whereas IgE remained unchanged. CONCLUSIONS: Suppression of basophil activation occurs within the first 90 days of peanut OIT, ultimately leading to suppression of signaling through pSYK.


Assuntos
Arachis , Hipersensibilidade a Amendoim , Criança , Pré-Escolar , Humanos , Administração Oral , Alérgenos , Basófilos , Dessensibilização Imunológica , Fatores Imunológicos
8.
J Allergy Clin Immunol ; 148(3): 689-693, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111450

RESUMO

Food allergies have increased at an alarming rate over the past 2 decades, indicating that environmental factors are driving disease progression. It has been postulated that sensitization to foods, in particular, peanut, occurs through impaired skin. Peanut allergens have been quantified in household dust and may be the culprit source. Indeed, TH2 cell-skewing innate cytokines can be driven by application of food antigens on both intact and impaired skin of mice, resulting in antigen-specific IgE production and anaphylaxis following allergen exposure. However, allergy induction through the skin can be prevented by induction of oral tolerance before skin exposure. These observations led to the dual allergen exposure hypothesis, according to which oral exposure to food antigens leads to tolerance and antigen exposure on impaired skin leads to allergy. Here, we propose the airway as an alternative route of sensitization in the dual allergen exposure hypothesis that leads to food allergy. Specifically, we will provide evidence from mouse models and human cell-based studies that together implicate the airway as a plausible route of sensitization.


Assuntos
Hipersensibilidade a Amendoim/imunologia , Sistema Respiratório/imunologia , Pele/imunologia , Alérgenos/imunologia , Animais , Arachis/imunologia , Humanos , Tolerância Imunológica
9.
J Allergy Clin Immunol ; 143(3): 1027-1037.e7, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30342892

RESUMO

BACKGROUND: Improved animal models are needed to understand the genetic and environmental factors that contribute to food allergy. OBJECTIVE: We sought to assess food allergy phenotypes in a genetically diverse collection of mice. METHODS: We selected 16 Collaborative Cross (CC) mouse strains, as well as the classic inbred C57BL/6J, C3H/HeJ, and BALB/cJ strains, for screening. Female mice were sensitized to peanut intragastrically with or without cholera toxin and then challenged with peanut by means of oral gavage or intraperitoneal injection and assessed for anaphylaxis. Peanut-specific immunoglobulins, T-cell cytokines, regulatory T cells, mast cells, and basophils were quantified. RESULTS: Eleven of the 16 CC strains had allergic reactions to intraperitoneal peanut challenge, whereas only CC027/GeniUnc mice reproducibly experienced severe symptoms after oral food challenge (OFC). CC027/GeniUnc, C3H/HeJ, and C57BL/6J mice all mounted a TH2 response against peanut, leading to production of IL-4 and IgE, but only the CC027/GeniUnc mice reacted to OFC. Orally induced anaphylaxis in CC027/GeniUnc mice was correlated with serum levels of Ara h 2 in circulation but not with allergen-specific IgE or mucosal mast cell protease 1 levels, indicating systemic allergen absorption is important for anaphylaxis through the gastrointestinal tract. Furthermore, CC027/GeniUnc, but not C3H/HeJ or BALB/cJ, mice can be sensitized in the absence of cholera toxin and react on OFC to peanut. CONCLUSIONS: We have identified and characterized CC027/GeniUnc mice as a strain that is genetically susceptible to peanut allergy and prone to severe reactions after OFC. More broadly, these findings demonstrate the untapped potential of the CC population in developing novel models for allergy research.


Assuntos
Alérgenos/efeitos adversos , Arachis/efeitos adversos , Hipersensibilidade a Amendoim/genética , Alérgenos/imunologia , Animais , Arachis/imunologia , Toxina da Cólera/administração & dosagem , Citocinas/genética , Feminino , Variação Genética , Imunoglobulina E/imunologia , Jejuno/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Hipersensibilidade a Amendoim/imunologia , Especificidade da Espécie , Baço/imunologia
10.
Yale J Biol Med ; 93(5): 669-673, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33380927

RESUMO

Tree nut allergies affect 1% of the United States population, are often severe in nature and rarely outgrown. Despite the severity and prevalence, there are no FDA-approved treatments for tree nut allergy. Development of a therapeutic would be expedited by having a mouse model that mimics the human disease. We utilized the CC027/GeniUnc mouse strain, which was previously identified as an orally reactive model of peanut allergy, to develop a model of walnut allergy. Mice were sensitized with walnut and cholera toxin for 4 weeks and subsequently challenged by oral gavage. Blood samples were collected to measure serum IgE. Walnut-sensitized mice produced high levels of walnut-IgE and were cross-sensitized to pecan. Oral challenges with walnut resulted in severe anaphylaxis and accompanying allergic symptoms. Importantly, pecan challenges also led to severe allergic reactions, indicating cross-reactivity to pecan. Overall, this novel mouse model reproduces key characteristics of human walnut allergy, which provides a platform to develop novel therapies and better understand sensitization mechanisms.


Assuntos
Juglans , Hipersensibilidade a Noz , Hipersensibilidade a Amendoim , Alérgenos , Animais , Humanos , Camundongos , Prevalência
11.
Clin Exp Allergy ; 49(11): 1500-1511, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31444814

RESUMO

BACKGROUND: There is growing evidence that environmental peanut exposure through non-oral routes, including the skin and respiratory tract, can result in peanut sensitization. Environmental adjuvants in indoor dust can promote sensitization to inhaled antigens, but whether they contribute to peanut allergy development is unclear. OBJECTIVE: We investigated whether indoor dust promotes airway sensitization to peanut and peanut allergy development in mice. METHODS: Female and male C57BL/6J mice were exposed via the airways to peanut, indoor dust extract, or both for 2 weeks. Mice were then challenged with peanut and assessed for anaphylaxis. Peanut-specific immunoglobulins, peanut uptake by lung conventional dendritic cells (cDCs), lung innate cytokines, and T cell differentiation in lung-draining lymph nodes were quantified. Innate cytokine production by primary human bronchial epithelial cells exposed to indoor dust was also determined. RESULTS: Inhalational exposure to low levels of peanut in combination with indoor dust, but neither alone, resulted in production of peanut-specific IgE and development of anaphylaxis upon peanut challenge. Indoor dust triggered production of innate cytokines in murine lungs and in primary human bronchial epithelial cells. Additionally, inhaled indoor dust stimulated maturation and migration of peanut-laden lung type 1 cDCs to draining lymph nodes. Inhalational exposure to peanut and indoor dust induced peanut-specific T helper 2 cell differentiation and accumulation of T follicular helper cells in draining lymph nodes, which were associated with increased B cell numbers and peanut-specific immunoglobulin production. CONCLUSIONS & CLINICAL RELEVANCE: Indoor dust promotes airway sensitization to peanut and development of peanut allergy in mice. Our findings suggest that environmental adjuvants in indoor dust may be determinants of peanut allergy development in children.


Assuntos
Adjuvantes Imunológicos/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Arachis/imunologia , Poeira , Pulmão , Hipersensibilidade a Amendoim , Animais , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Feminino , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Hipersensibilidade a Amendoim/etiologia , Hipersensibilidade a Amendoim/imunologia , Hipersensibilidade a Amendoim/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
12.
Curr Allergy Asthma Rep ; 19(12): 61, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797153

RESUMO

PURPOSE OF REVIEW: Investigational allergen immunotherapies (AITs) including oral immunotherapy (OIT), sublingual immunotherapy (SLIT), and epicutaneous immunotherapy (EPIT) have proven to increase allergen thresholds required to elicit an allergic reaction in a majority of subjects. However, these studies lack consistent biomarkers to predict therapy outcomes. Here, we will review biomarkers that are currently being investigated for AIT. RECENT FINDINGS: The mechanisms underlying the therapeutic benefit of AIT involve various cell types, including mast cells, basophils, T cells, and B cells. Skin prick and basophil activation tests assess effector cell sensitivity to allergen and are decreased in subjects on AIT. Allergen-specific IgE increases initially and decreases with continued therapy, while allergen-specific IgG and IgA increase throughout therapy. Allergen-induced regulatory T cells (Tregs) increase throughout therapy and were found to be associated with sustained unresponsiveness after OIT. Subjects on OIT and SLIT have decreased Th2 cytokine production during therapy. Although trends have been reported, a common limitation of these biomarkers is that none are able to reproducibly predict prognosis during AIT. Further studies are needed to expand the currently available biomarker repertoire to provide personalized approaches to AIT.


Assuntos
Dessensibilização Imunológica , Hipersensibilidade Alimentar/terapia , Basófilos/imunologia , Biomarcadores , Hipersensibilidade Alimentar/diagnóstico , Hipersensibilidade Alimentar/imunologia , Humanos , Imunoglobulinas/imunologia , Testes Cutâneos , Linfócitos T/imunologia
14.
J Proteome Res ; 16(2): 1039-1049, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27933904

RESUMO

Protein secretion is essential for numerous cellular activities, and secreted proteins in bodily fluids are a promising and noninvasive source of biomarkers for disease detection. Systematic analysis of secreted proteins and glycoproteins will provide insight into protein function and cellular activities. Yeast (Saccharomyces cerevisiae) is an excellent model system for eukaryotic cells, but global analysis of secreted proteins and glycoproteins in yeast is challenging due to the low abundances of secreted proteins and contamination from high-abundance intracellular proteins. Here, by using mild separation of secreted proteins from cells, we comprehensively identified and quantified secreted proteins and glycoproteins through inhibition of glycosylation and mass spectrometry-based proteomics. In biological triplicate experiments, 245 secreted proteins were identified, and comparison with previous experimental and computational results demonstrated that many identified proteins were located in the extracellular space. Most quantified secreted proteins were down-regulated from cells treated with an N-glycosylation inhibitor (tunicamycin). The quantitative results strongly suggest that the secretion of these down-regulated proteins was regulated by glycosylation, while the secretion of proteins with minimal abundance changes was contrarily irrelevant to protein glycosylation, likely being secreted through nonclassical pathways. Glycoproteins in the yeast secretome were globally analyzed for the first time. A total of 27 proteins were quantified in at least two protein and glycosylation triplicate experiments, and all except one were down-regulated under N-glycosylation inhibition, which is solid experimental evidence to further demonstrate that the secretion of these proteins is regulated by their glycosylation. These results provide valuable insight into protein secretion, which will further advance protein secretion and disease studies.


Assuntos
Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glicoproteínas/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Cromatografia Líquida , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Dosagem de Genes , Ontologia Genética , Glicoproteínas/biossíntese , Glicoproteínas/genética , Glicosilação/efeitos dos fármacos , Marcação por Isótopo , Anotação de Sequência Molecular , Proteoma/biossíntese , Proteoma/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem , Tunicamicina/farmacologia
16.
Analyst ; 141(12): 3737-45, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27007503

RESUMO

Tunicamycin is a potent protein N-glycosylation inhibitor that has frequently been used to manipulate protein glycosylation in cells. However, protein expression and glycosylation changes as a result of tunicamycin treatment are still unclear. Using yeast as a model system, we systematically investigated the cellular response to tunicamycin at the proteome and N-glycoproteome levels. By utilizing modern mass spectrometry-based proteomics, we quantified 4259 proteins, which nearly covers the entire yeast proteome. After the three-hour tunicamycin treatment, more than 5% of proteins were down-regulated by at least 2 fold, among which proteins related to several glycan metabolism and glycolysis-related pathways were highly enriched. Furthermore, several proteins in the canonical unfolded protein response pathway were up-regulated because the inhibition of protein N-glycosylation impacts protein folding and trafficking. We also comprehensively quantified protein glycosylation changes in tunicamycin-treated cells, and more than one third of quantified unique glycopeptides (168 of 465 peptides) were down-regulated. Proteins containing down-regulated glycopeptides were related to glycosylation, glycoprotein metabolic processes, carbohydrate processes, and cell wall organization according to gene ontology clustering. The current results provide the first global view of the cellular response to tunicamycin at the proteome and glycoproteome levels.


Assuntos
Proteoma , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Tunicamicina/farmacologia , Glicoproteínas/química , Glicosilação , Saccharomyces cerevisiae/química
17.
Mol Cell Proteomics ; 13(6): 1563-72, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24692641

RESUMO

Glycosylation is one of the most common and important protein modifications in biological systems. Many glycoproteins naturally occur at low abundances, which makes comprehensive analysis extremely difficult. Additionally, glycans are highly heterogeneous, which further complicates analysis in complex samples. Lectin enrichment has been commonly used, but each lectin is inherently specific to one or several carbohydrates, and thus no single or collection of lectin(s) can bind to all glycans. Here we have employed a boronic acid-based chemical method to universally enrich glycopeptides. The reaction between boronic acids and sugars has been extensively investigated, and it is well known that the interaction between boronic acid and diols is one of the strongest reversible covalent bond interactions in an aqueous environment. This strong covalent interaction provides a great opportunity to catch glycopeptides and glycoproteins by boronic acid, whereas the reversible property allows their release without side effects. More importantly, the boronic acid-diol recognition is universal, which provides great capability and potential for comprehensively mapping glycosylation sites in complex biological samples. By combining boronic acid enrichment with PNGase F treatment in heavy-oxygen water and MS, we have identified 816 N-glycosylation sites in 332 yeast proteins, among which 675 sites were well-localized with greater than 99% confidence. The results demonstrated that the boronic acid-based chemical method can effectively enrich glycopeptides for comprehensive analysis of protein glycosylation. A general trend seen within the large data set was that there were fewer glycosylation sites toward the C termini of proteins. Of the 332 glycoproteins identified in yeast, 194 were membrane proteins. Many proteins get glycosylated in the high-mannose N-glycan biosynthetic and GPI anchor biosynthetic pathways. Compared with lectin enrichment, the current method is more cost-efficient, generic, and effective. This method can be extensively applied to different complex samples for the comprehensive analysis of protein glycosylation.


Assuntos
Glicoproteínas/biossíntese , Espectrometria de Massas , Polissacarídeos/metabolismo , Proteoma/análise , Sequência de Aminoácidos , Ácidos Borônicos/metabolismo , Cromatografia Líquida , Glicoproteínas/isolamento & purificação , Glicosilação , Lectinas/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae
18.
J Proteome Res ; 14(3): 1600-11, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25668447

RESUMO

For decades, statins have been widely used to lower cholesterol levels by inhibiting the enzyme HMG Co-A reductase (HMGCR). It is well-known that statins have pleiotropic effects including improving endothelial function and inhibiting vascular inflammation and oxidation. However, the cellular responses to statins and corresponding pleiotropic effects are largely unknown at the proteome level. Emerging mass spectrometry-based proteomics provides a unique opportunity to systemically investigate protein and phosphoprotein abundance changes as a result of statin treatment. Many lipid-related protein abundances were increased in HepG2 cells treated by atorvastatin, including HMGCR, FDFT, SQLE, and LDLR, while the abundances of proteins involved in cellular response to stress and apoptosis were decreased. Comprehensive analysis of protein phosphorylation demonstrated that several basic motifs were enriched among down-regulated phosphorylation sites, which indicates that kinases with preference for these motifs, such as protein kinase A and protein kinase C, have attenuated activities. Phosphopeptides on a group of G-protein modulators were up-regulated, which strongly suggests that cell signal rewiring was a result of the effect of protein lipidation by the statin. This work provides a global view of liver cell responses to atorvastatin at the proteome and phosphoproteome levels, which provides insight into the pleiotropic effects of statins.


Assuntos
Anticolesterolemiantes/farmacologia , Atorvastatina/farmacologia , Fígado/efeitos dos fármacos , Proteômica , Células Hep G2 , Humanos , Fígado/metabolismo , Espectrometria de Massas
19.
J Proteome Res ; 13(3): 1466-73, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24490756

RESUMO

Glycosylation is one of the most important protein modifications in biological systems. It plays a critical role in protein folding, trafficking, and stability as well as cellular events such as immune response and cell-to-cell communication. Aberrant protein glycosylation is correlated with several diseases including diabetes, cancer, and infectious diseases. The heterogeneity of glycans makes comprehensive identification of protein glycosylation sites very difficult by MS because it is challenging to match mass spectra to peptides that contain different types of unknown glycans. We combined a chemical deglycosylation method with LC-MS-based proteomics techniques to comprehensively identify protein N-glycosylation sites in yeast. On the basis of the differences in chemical properties between the amide bond of the N-linkage and the glycosidic bond of the O-linkage of sugars, O-linked sugars were removed and only the innermost N-linked GlcNAc remained, which served as a mass tag for MS analysis. This chemical deglycosylation method allowed for the identification of 555 protein N-glycosylation sites in yeast by LC-MS, which is 46% more than those obtained from the parallel experiments using the Endo H cleavage method. A total of 250 glycoproteins were identified, including 184 membrane proteins. This method can be extensively used for other biological samples.


Assuntos
Glicoproteínas/análise , Peptídeos/análise , Polissacarídeos/análise , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sequência de Carboidratos , Cromatografia Líquida , Glicoproteínas/química , Glicosilação , Hidrólise , Espectrometria de Massas , Dados de Sequência Molecular , Polissacarídeos/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
20.
Immun Inflamm Dis ; 11(9): e1029, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37773691

RESUMO

BACKGROUND: Eosinophilic esophagitis (EoE) is an immune-mediated disease, characterized by Th2-type inflammation linked to specific foods. No currently available allergy tests reliably identify food triggers in EoE, leading to empiric dietary elimination strategies. Recently, milk- and wheat-specific IgA in esophageal brushings were linked to clinical food triggers. In this study, we aimed to determine whether food-specific IgA from esophageal biopsies is associated with known food triggers. METHODS: A prior cohort of 21 patients (median age 39 years) with confirmed EoE underwent empirical elimination diets and subsequent reintroduction of foods to determine triggers. Archived baseline biopsies were used to quantify levels of peanut-, milk-, soy-, egg-, wheat-specific and total IgA by enzyme-linked immunosorbent assay. RESULTS: Overall, 13 patients (62%) responded to the dietary elimination as determined by histology (<15 eos/hpf), with milk and egg being the most common triggers. Biopsies had varying amounts of total IgA, while food-specific IgA was only detectable in 48 of 105 (46%) samples. Food-specific IgA was normalized to total IgA for each sample and stratified by whether a food was a known trigger. For all foods tested, there were no significant differences in IgA between positive and negative triggers. CONCLUSIONS: Food-specific IgA in esophageal biopsies was not associated with previously identified food triggers in this cohort. Future studies comparing food-specific IgA in esophageal brushings, mucous scrapings, and biopsies from patients with known triggers will be critical to determining whether food-specific IgA may serve as a biomarker for identification of EoE triggers.


Assuntos
Esofagite Eosinofílica , Humanos , Adulto , Esofagite Eosinofílica/diagnóstico , Alimentos , Biópsia , Alérgenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA