RESUMO
Fibrosis is a chronic pathology resulting from excessive deposition of extracellular matrix components that leads to the loss of tissue function. Pulmonary fibrosis can follow a variety of diverse insults including ischemia, respiratory infection, or exposure to ionizing radiation. Consequently, treatments that attenuate the development of debilitating fibrosis are in desperate need across a range of conditions. Sphingolipid metabolism is a critical regulator of cell proliferation, apoptosis, autophagy, and pathologic inflammation, processes that are all involved in fibrosis. Opaganib (formerly ABC294640) is the first-in-class investigational drug targeting sphingolipid metabolism for the treatment of cancer and inflammatory diseases. Opaganib inhibits key enzymes in sphingolipid metabolism, including sphingosine kinase-2 and dihydroceramide desaturase, thereby reducing inflammation and promoting autophagy. Herein, we demonstrate in mouse models of lung damage following exposure to ionizing radiation that opaganib significantly improved long-term survival associated with reduced lung fibrosis, suppression of granulocyte infiltration, and reduced expression of IL-6 and TNFα at 180 days after radiation. These data further demonstrate that sphingolipid metabolism is a critical regulator of fibrogenesis, and specifically show that opaganib suppresses radiation-induced pulmonary inflammation and fibrosis. Because opaganib has demonstrated an excellent safety profile during clinical testing in other diseases (cancer and COVID-19), the present studies support additional clinical trials with this drug in patients at risk for pulmonary fibrosis.
Assuntos
Adamantano/análogos & derivados , Contramedidas Médicas , Neoplasias , Pneumonia , Fibrose Pulmonar , Piridinas , Camundongos , Animais , Humanos , Esfingolipídeos/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Fibrose , Inflamação/tratamento farmacológicoRESUMO
Antibody-based cancer drugs that target the checkpoint proteins CTLA-4, PD-1 and PD-L1 provide marked improvement in some patients with deadly diseases such as lung cancer and melanoma. However, most patients are either unresponsive or relapse following an initial response, underscoring the need for further improvement in immunotherapy. Certain drugs induce immunogenic cell death (ICD) in tumor cells in which the dying cells promote immunologic responses in the host that may enhance the in vivo activity of checkpoint antibodies. Sphingolipid metabolism is a key pathway in cancer biology, in which ceramides and sphingosine 1-phosphate (S1P) regulate tumor cell death, proliferation and drug resistance, as well as host inflammation and immunity. In particular, sphingosine kinases are key sites for manipulation of the ceramide/S1P balance that regulates tumor cell proliferation and sensitivity to radiation and chemotherapy. We and others have demonstrated that inhibition of sphingosine kinase-2 by the small-molecule investigational drug opaganib (formerly ABC294640) kills tumor cells and increases their sensitivities to other drugs and radiation. Because sphingolipids have been shown to regulate ICD, opaganib may induce ICD and improve the efficacy of checkpoint antibodies for cancer therapy. This was demonstrated by showing that in vitro treatment with opaganib increases the surface expression of the ICD marker calreticulin on a variety of tumor cell types. In vivo confirmation was achieved using the gold standard immunization assay in which B16 melanoma, Lewis lung carcinoma (LLC) or Neuro-2a neuroblastoma cells were treated with opaganib in vitro and then injected subcutaneously into syngeneic mice, followed by implantation of untreated tumor cells 7 days later. In all cases, immunization with opaganib-treated cells strongly suppressed the growth of subsequently injected tumor cells. Interestingly, opaganib treatment induced crossover immunity in that opaganib-treated B16 cells suppressed the growth of both untreated B16 and LLC cells and opaganib-treated LLC cells inhibited the growth of both untreated LLC and B16 cells. Next, the effects of opaganib in combination with a checkpoint antibody on tumor growth in vivo were assessed. Opaganib and anti-PD-1 antibody each slowed the growth of B16 tumors and improved mouse survival, while the combination of opaganib plus anti-PD-1 strongly suppressed tumor growth and improved survival (p < 0.0001). Individually, opaganib and anti-CTLA-4 antibody had modest effects on the growth of LLC tumors and mouse survival, whereas the combination of opaganib with anti-CTLA-4 substantially inhibited tumor growth and increased survival (p < 0.001). Finally, the survival of mice bearing B16 tumors was only marginally improved by opaganib or anti-PD-L1 antibody alone but was nearly doubled by the drugs in combination (p < 0.005). Overall, these studies demonstrate the ability of opaganib to induce ICD in tumor cells, which improves the antitumor activity of checkpoint antibodies.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Lewis , Melanoma Experimental , Humanos , Animais , Camundongos , Morte Celular Imunogênica , Antineoplásicos/uso terapêutico , Piridinas , Melanoma Experimental/tratamento farmacológico , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Linhagem Celular TumoralRESUMO
Exposure to ionizing radiation (IR) is a lingering threat from accidental or terroristic nuclear events, but is also widely used in cancer therapy. In both cases, host inflammatory responses to IR damage normal tissue causing morbidity and possibly mortality to the victim/patient. Opaganib, a first-in-class inhibitor of sphingolipid metabolism, has broad anti-inflammatory and anticancer activity. Opaganib elevates ceramide and reduces sphingosine 1-phosphate (S1P) in cells, conditions that increase the antitumor efficacy of radiation while concomitantly suppressing inflammatory damage to normal tissue. Therefore, opaganib may suppress toxicity from unintended IR exposure and improve patient response to chemoradiation. To test these hypotheses, we first examined the effects of opaganib on the toxicity and antitumor activity of radiation in mice exposed to total body irradiation (TBI) or IR with partial bone marrow shielding. Oral treatment with opaganib 2 h before TBI shifted the LD75 from 9.5 Gy to 11.5 Gy, and provided substantial protection against gastrointestinal damage associated with suppression of radiation-induced elevations of S1P and TNFα in the small intestines. In the partially shielded model, opaganib provided dose-dependent survival advantages when administered 4 h before or 24 h after radiation exposure, and was particularly effective when given both prior to and following radiation. Relevant to cancer radiotherapy, opaganib decreased the sensitivity of IEC6 (non-transformed mouse intestinal epithelial) cells to radiation, while sensitizing PAN02 cells to in vitro radiation. Next, the in vivo effects of opaganib in combination with radiation were examined in a syngeneic tumor model consisting of C57BL/6 mice bearing xenografts of PAN02 pancreatic cancer cells and a cross-species xenograft model consisting of nude mice bearing xenografts of human FaDu cells. Mice were treated with opaganib and/or IR (plus cisplatin in the case of FaDu tumors). In both tumor models, the optimal suppression of tumor growth was attained by the combination of opaganib with IR (± cisplatin). Overall, opaganib substantially protects normal tissue from radiation damage that may occur through unintended exposure or cancer radiotherapy.
Assuntos
Cisplatino , Neoplasias , Humanos , Camundongos , Animais , Camundongos Nus , Camundongos Endogâmicos C57BL , Linhagem Celular TumoralRESUMO
Telomerase activation protects cells from telomere damage by delaying senescence and inducing cell immortalization, whereas telomerase inhibition mediates rapid senescence or apoptosis. However, the cellular mechanisms that determine telomere damage-dependent senescence versus apoptosis induction are largely unknown. Here, we demonstrate that telomerase instability mediated by silencing of sphingosine kinase 2 (SPHK2) and sphingosine 1-phosphate (S1P), which binds and stabilizes telomerase, induces telomere damage-dependent caspase-3 activation and apoptosis, but not senescence, in p16-deficient lung cancer cells or tumors. These outcomes were prevented by knockdown of a tumor-suppressor protein, transcription factor 21 (TCF21), or by ectopic expression of WT human telomerase reverse transcriptase (hTERT) but not mutant hTERT with altered S1P binding. Interestingly, SphK2-deficient mice exhibited accelerated aging and telomerase instability that increased telomere damage and senescence via p16 activation especially in testes tissues, but not in apoptosis. Moreover, p16 silencing in SphK2-/- mouse embryonic fibroblasts activated caspase-3 and apoptosis without inducing senescence. Furthermore, ectopic WT p16 expression in p16-deficient A549 lung cancer cells prevented TCF21 and caspase-3 activation and resulted in senescence in response to SphK2/S1P inhibition and telomere damage. Mechanistically, a p16 mutant with impaired caspase-3 association did not prevent telomere damage-induced apoptosis, indicating that an association between p16 and caspase-3 proteins forces senescence induction by inhibiting caspase-3 activation and apoptosis. These results suggest that p16 plays a direct role in telomere damage-dependent senescence by limiting apoptosis via binding to caspase-3, revealing a direct link between telomere damage-dependent senescence and apoptosis with regards to aging and cancer.
Assuntos
Apoptose , Caspase 3/metabolismo , Senescência Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neoplasias Pulmonares/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Telômero/patologia , Animais , Caspase 3/genética , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Knockout , Camundongos SCID , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Telômero/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Executive function (EF) performance in older adults has been linked with functional and structural profiles within the executive control network (ECN) and default mode network (DMN), white matter hyperintensities (WMH) burden and levels of Alzheimer's disease (AD) pathology. Here, we simultaneously explored the unique contributions of these factors to baseline and longitudinal EF performance in older adults. Thirty-two cognitively normal (CN) older adults underwent neuropsychological testing at baseline and annually for three years. Neuroimaging and AD pathology measures were collected at baseline. Separate linear regression models were used to determine which of these variables predicted composite EF scores at baseline and/or average annual change in composite ΔEF scores over the three-year follow-up period. Results demonstrated that low DMN deactivation, high ECN activation and WMH burden were the main predictors of EF scores at baseline. In contrast, poor DMN and ECN WM microstructure and higher AD pathology predicted greater annual decline in EF scores. Subsequent mediation analysis demonstrated that DMN WM microstructure uniquely mediated the relationship between AD pathology and ΔEF. These results suggest that functional activation patterns within the DMN and ECN and WMHs contribute to baseline EF while structural connectivity within these networks impact longitudinal EF performance in older adults.
Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiopatologia , Função Executiva/fisiologia , Vias Neurais/fisiopatologia , Substância Branca/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Doença de Alzheimer/fisiopatologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , MasculinoRESUMO
Non-small cell lung cancer (NSCLC) accounts for about 85-90% of lung cancer cases, and is the number one killer among cancers in the United States. The majorities of lung cancer patients do not respond well to conventional chemo- and/or radio-therapeutic regimens, and have a dismal 5-year survival rate of â¼15%. The recent introduction of targeted therapy and immunotherapy gives new hopes to NSCLC patients, but even with these agents, not all patients respond, and responses are rarely complete. Thus, there is still an urgent need to identify new therapeutic targets in NSCLC and develop novel anti-cancer agents. Sphingosine kinase 2 (SphK2) is one of the key enzymes in sphingolipid metabolism. SphK2 expression predicts poor survival in NSCLC patients, and is associated with Gefitinib-resistance. In this study, the anti-NSCLC activities of ABC294640, the only first-in-class orally available inhibitor of SphK2, were explored. The results obtained indicate that ABC294640 treatment causes significant NSCLC cell apoptosis, cell cycle arrest and suppression of tumor growth in vitro and in vivo. Moreover, lipidomics analyses revealed the complete signature of ceramide and dihydro(dh)-ceramide species in the NSCLC cell-lines with or without ABC294640 treatment. These findings indicate that sphingolipid metabolism targeted therapy may be developed as a promising strategy against NSCLC.
Assuntos
Adamantano/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piridinas/farmacologia , Células A549 , Adamantano/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos dos fármacos , Ceramidas/biossíntese , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Distribuição Aleatória , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Glycogen synthase kinase-3s (GSK3α and GSK3ß) are constitutively active protein kinases that target over 100 substrates, incorporate into numerous protein complexes, and regulate such vital cellular functions as proliferation, apoptosis, and inflammation. Cyclin-dependent kinase 9 (CDK9) regulates RNA production as a component of positive transcription elongation factor b and promotes expression of oncogenic and inflammatory genes. Simultaneous inhibition of these signaling nodes is a promising approach for drug discovery, although previous compounds exhibit limited selectivity and clinical efficacy. The novel diaminothiazole ABC1183 is a selective GSK3α/ß and CDK9 inhibitor and is growth-inhibitory against a broad panel of cancer cell lines. ABC1183 treatment decreases cell survival through G2/M arrest and modulates oncogenic signaling through changes in GSK3, glycogen synthase, and ß-catenin phosphorylation and MCL1 expression. Oral administration, which demonstrates no organ or hematologic toxicity, suppresses tumor growth and inflammation-driven gastrointestinal disease symptoms, owing in part to downregulation of tumor necrosis factor α and interleukin-6 proinflammatory cytokines. Therefore, ABC1183 is strategically poised to effectively mitigate multiple clinically relevant diseases.
Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/uso terapêutico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Nitrilas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Idiopathic normal pressure hydrocephalus (NPH) remains both oversuspected on clinical grounds and underconfirmed when based on immediate and sustained response to cerebrospinal fluid diversion. Poor long-term postshunt benefits and findings of neurodegenerative pathology in most patients with adequate follow-up suggest that hydrocephalic disorders appearing in late adulthood may often result from initially unapparent parenchymal abnormalities. We critically review the NPH literature, highlighting the near universal lack of blinding and controls, absence of specific clinical, imaging, or pathological features, and ongoing dependence for diagnostic confirmation on variable cutoffs of gait response to bedside fluid-drainage testing. We also summarize our long-term institutional experience, in which postshunt benefits in patients with initial diagnosis of idiopathic NPH persist in only 32% of patients at 36 months, with known revised diagnosis in over 25% (Alzheimer's disease, dementia with Lewy bodies, and progressive supranuclear palsy). We postulate that previously reported NPH cases with "dual" pathology (ie, developing a "second" disorder) more likely represent ventriculomegalic presentations of selected neurodegenerative disorders in which benefits from shunting may be short-lived, with a consequently unfavorable risk-benefit ratio. Ann Neurol 2017;82:503-513.
Assuntos
Hidrocefalia de Pressão Normal/complicações , Hidrocefalia de Pressão Normal/cirurgia , Doenças Neurodegenerativas/etiologia , Progressão da Doença , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Humanos , Hidrocefalia de Pressão Normal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/diagnóstico por imagem , PubMed/estatística & dados numéricosRESUMO
Tolyporphins are glycosylated macrocycles isolated from lipophilic soil extracts of the cyanobacterium, Tolypothrix nodosa, and found to potentiate the cytotoxicity of antitumor drugs like vinblastine and adriamycin. Here we find that, unlike porphyrins, tolyporphins are not able to form complexes with most metal ions. However, they do react strongly with copper(II) and silver(II), forming square-planar metal complexes with an unpaired electron in a dx2-y2 orbital of the metal delocalized onto the ligating tolyporphin nitrogen atoms. Complexes were characterized by visible absorption spectra, mass spectrometry (EI, FAB, ESI, LDI-TOF, and MALDI-TOF) and multifrequency continuous-wave electron paramagnetic resonance spectra. Copper(II) and silver(II) complexes of tolyporphins A and E were found to have the interesting property of reversing multidrug resistance (MDR), with the copper complexes being less toxic than free tolyporphins. Reactive oxygen-free radicals were implicated in both the cytotoxic and MDR-reversing effects of free and metalated tolyporphins.
Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Cianobactérias/química , Compostos Macrocíclicos/farmacologia , Porfirinas/farmacologia , Prata/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Compostos Macrocíclicos/química , Estrutura Molecular , Porfirinas/química , Prata/química , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
OBJECTIVE: This study aims to add clarity to the relationship between deep and periventricular brain white matter hyperintensities (WMHs), cerebral blood flow (CBF), and cerebrovascular risk in older persons. METHODS: Deep white matter hyperintensity (dWMH) and periventricular white matter hyperintensity (pWMH) and regional gray matter (GM) and white matter (WM) blood flow from arterial spin labeling were quantified from magnetic resonance imaging scans of 26 cognitively normal elderly subjects stratified by cerebrovascular disease (CVD) risk. Fluid-attenuated inversion recovery images were acquired using a high-resolution 3-dimensional (3-D) sequence that reduced partial volume effects seen with slice-based techniques. RESULTS: dWMHs but not pWMHs were increased in patients at high risk of CVD; pWMHs but not dWMHs were associated with decreased regional cortical (GM) blood flow. We also found that blood flow in WM is decreased in regions of both pWMH and dWMH, with a greater degree of decrease in pWMH areas. CONCLUSIONS: WMHs are usefully divided into dWMH and pWMH regions because they demonstrate differential effects. 3-D regional WMH volume is a potentially valuable marker for CVD based on associations with cortical CBF and WM CBF.
Assuntos
Envelhecimento/patologia , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/fisiopatologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico , Transtornos Cerebrovasculares/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Fatores de Risco , Estatística como Assunto , Substância Branca/diagnóstico por imagemRESUMO
Radiation optic neuropathy (RON) is an iatrogenic complication that causes severe, irreversible vision loss within months to years following radiation to lesions close to the visual pathway. The authors describe a case of RON in glioblastoma after radio-sensitisation with temozolomide with sequential involvement of both optic nerves. This case provides a timeline for clinical and imaging findings with RON and specifically resolution of nerve enhancement. The authors also highlight the potential of an increase in incidence of RON in glioblastoma with advances in survival seen with greater use of second-line chemotherapy and even re-radiation.
RESUMO
Sphingosine kinase 2 (SPK2) and autophagy are both involved in brain preconditioning, but whether preconditioning-induced SPK2 up-regulation and autophagy activation are linked mechanistically remains to be elucidated. In this study, we used in vitro and in vivo models to explore the role of SPK2-mediated autophagy in isoflurane and hypoxic preconditioning. In primary mouse cortical neurons, both isoflurane and hypoxic preconditioning induced autophagy. Isoflurane and hypoxic preconditioning protected against subsequent oxygen glucose deprivation or glutamate injury, whereas pretreatment with autophagy inhibitors (3-methyladenine or KU55933) abolished preconditioning-induced tolerance. Pretreatment with SPK2 inhibitors (ABC294640 and SKI-II) or SPK2 knockdown prevented preconditioning-induced autophagy. Isoflurane also induced autophagy in mouse in vivo as shown by Western blots for LC3 and p62, LC3 immunostaining, and electron microscopy. Isoflurane-induced autophagy in mice lacking the SPK1 isoform (SPK1(-/-)), but not in SPK2(-/-)mice. Sphingosine 1-phosphate and the sphingosine 1-phosphate receptor agonist FTY720 did not protect against oxygen glucose deprivation in cultured neurons and did not alter the expression of LC3 and p62, suggesting that SPK2-mediated autophagy and protections are not S1P-dependent. Beclin 1 knockdown abolished preconditioning-induced autophagy, and SPK2 inhibitors abolished isoflurane-induced disruption of the Beclin 1/Bcl-2 association. These results strongly indicate that autophagy is involved in isoflurane preconditioning both in vivo and in vitro and that SPK2 contributes to preconditioning-induced autophagy, possibly by disrupting the Beclin 1/Bcl-2 interaction.
Assuntos
Autofagia , Córtex Cerebral/metabolismo , Precondicionamento Isquêmico , Neurônios/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Adamantano/análogos & derivados , Adamantano/farmacologia , Anestésicos Inalatórios/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Células Cultivadas , Córtex Cerebral/citologia , Inibidores Enzimáticos/farmacologia , Isoflurano/farmacologia , Lactosilceramidas/genética , Lactosilceramidas/metabolismo , Camundongos , Camundongos Knockout , Morfolinas/farmacologia , Neurônios/citologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Piridinas/farmacologia , Pironas/farmacologia , Fator de Transcrição TFIIH , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: The Boston Naming Test (BNT) is a commonly used neuropsychological test of confrontation naming that aids in determining the presence and severity of dysnomia. Many short versions of the original 60-item test have been developed and are routinely administered in clinical/research settings. Because of the common need to translate similar measures within and across studies, it is important to evaluate the operating characteristics and agreement of different BNT versions. METHODS: We analyzed longitudinal data of research volunteers (n = 681) from the University of Kentucky Alzheimer's Disease Center longitudinal cohort. CONCLUSIONS: With the notable exception of the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) 15-item BNT, short forms were internally consistent and highly correlated with the full version; these measures varied by diagnosis and generally improved from normal to mild cognitive impairment (MCI) to dementia. All short forms retained the ability to discriminate between normal subjects and those with dementia. The ability to discriminate between normal and MCI subjects was less strong for the short forms than the full BNT, but they exhibited similar patterns. These results have important implications for researchers designing longitudinal studies, who must consider that the statistical properties of even closely related test forms may be quite different.
Assuntos
Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/diagnóstico , Testes Neuropsicológicos/normas , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/psicologia , Anomia/etiologia , Feminino , Humanos , Idioma , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Hippocampal sclerosis of ageing is a prevalent brain disease that afflicts older persons and has been linked with cerebrovascular pathology. Arteriolosclerosis is a subtype of cerebrovascular pathology characterized by concentrically thickened arterioles. Here we report data from multiple large autopsy series (University of Kentucky Alzheimer's Disease Centre, Nun Study, and National Alzheimer's Coordinating Centre) showing a specific association between hippocampal sclerosis of ageing pathology and arteriolosclerosis. The present analyses incorporate 226 cases of autopsy-proven hippocampal sclerosis of ageing and 1792 controls. Case-control comparisons were performed including digital pathological assessments for detailed analyses of blood vessel morphology. We found no evidence of associations between hippocampal sclerosis of ageing pathology and lacunar infarcts, large infarcts, Circle of Willis atherosclerosis, or cerebral amyloid angiopathy. Individuals with hippocampal sclerosis of ageing pathology did not show increased rates of clinically documented hypertension, diabetes, or other cardiac risk factors. The correlation between arteriolosclerosis and hippocampal sclerosis of ageing pathology was strong in multiple brain regions outside of the hippocampus. For example, the presence of arteriolosclerosis in the frontal cortex (Brodmann area 9) was strongly associated with hippocampal sclerosis of ageing pathology (P < 0.001). This enables informative evaluation of anatomical regions outside of the hippocampus. To assess the morphology of brain microvasculature far more rigorously than what is possible using semi-quantitative pathological scoring, we applied digital pathological (Aperio ScanScope) methods on a subsample of frontal cortex sections from hippocampal sclerosis of ageing (n = 15) and control (n = 42) cases. Following technical studies to optimize immunostaining methods for small blood vessel visualization, our analyses focused on sections immunostained for smooth muscle actin (a marker of arterioles) and CD34 (an endothelial marker), with separate analyses on grey and white matter. A total of 43 834 smooth muscle actin-positive vascular profiles and 603 798 CD34-positive vascular profiles were evaluated. In frontal cortex of cases with hippocampal sclerosis of ageing, smooth muscle actin-immunoreactive arterioles had thicker walls (P < 0.05), larger perimeters (P < 0.03), and larger vessel areas (P < 0.03) than controls. Unlike the arterioles, CD34-immunoreactive capillaries had dimensions that were unchanged in cases with hippocampal sclerosis of ageing versus controls. Arteriolosclerosis appears specific to hippocampal sclerosis of ageing brains, because brains with Alzheimer's disease pathology did not show the same morphological alterations. We conclude that there may be a pathogenetic change in aged human brain arterioles that impacts multiple brain areas and contributes to hippocampal sclerosis of ageing.
Assuntos
Envelhecimento/patologia , Arteriolosclerose/patologia , Transtornos Cerebrovasculares/patologia , Hipocampo/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Arteríolas/patologia , Arteriolosclerose/complicações , Autopsia , Encéfalo/patologia , Capilares/patologia , Infarto Cerebral/patologia , Transtornos Cerebrovasculares/complicações , Estudos de Coortes , Bases de Dados Factuais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Modelos Logísticos , Masculino , Razão de Chances , EscleroseRESUMO
Cells expressing oncogenic c-Myc are sensitized to TNF superfamily proteins. c-Myc also is an important factor in determining whether a cell is sensitive to TRAIL-induced apoptosis, and it is well established that the mitochondrial pathway is essential for apoptosis induced by c-Myc. We investigated whether c-Myc action on the mitochondria is required for TRAIL sensitivity and found that Myc sensitized cells with defective intrinsic signaling to TRAIL. TRAIL induced expression of antiapoptotic Mcl-1 and cIAP2 through activation of NF-kappaB. Both Myc and the multikinase inhibitor sorafenib block NF-kappaB. Combining sorafenib with TRAIL in vivo showed dramatic efficacy in TRAIL-resistant tumor xenografts. We propose the combination of TRAIL with sorafenib holds promise for further development.
Assuntos
Antineoplásicos/farmacologia , Apoptose/fisiologia , Benzenossulfonatos/farmacologia , Proteínas Inibidoras de Apoptose/fisiologia , Proteínas de Neoplasias/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Piridinas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Animais , Apoptose/efeitos dos fármacos , Proteína 3 com Repetições IAP de Baculovírus , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Camundongos , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/genética , Niacinamida/análogos & derivados , Compostos de Fenilureia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sorafenibe , Transcrição Gênica/fisiologia , Ubiquitina-Proteína LigasesRESUMO
Recent behavioral data have shown that lifelong bilingualism can maintain youthful cognitive control abilities in aging. Here, we provide the first direct evidence of a neural basis for the bilingual cognitive control boost in aging. Two experiments were conducted, using a perceptual task-switching paradigm, including a total of 110 participants. In Experiment 1, older adult bilinguals showed better perceptual switching performance than their monolingual peers. In Experiment 2, younger and older adult monolinguals and bilinguals completed the same perceptual task-switching experiment while functional magnetic resonance imaging (fMRI) was performed. Typical age-related performance reductions and fMRI activation increases were observed. However, like younger adults, bilingual older adults outperformed their monolingual peers while displaying decreased activation in left lateral frontal cortex and cingulate cortex. Critically, this attenuation of age-related over-recruitment associated with bilingualism was directly correlated with better task-switching performance. In addition, the lower blood oxygenation level-dependent response in frontal regions accounted for 82% of the variance in the bilingual task-switching reaction time advantage. These results suggest that lifelong bilingualism offsets age-related declines in the neural efficiency for cognitive control processes.
Assuntos
Envelhecimento/psicologia , Cognição/fisiologia , Multilinguismo , Adulto , Idoso , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Escolaridade , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Testes de Inteligência , Testes de Linguagem , Imageamento por Ressonância Magnética , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Vocabulário , Escalas de WechslerRESUMO
Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in the elderly but risk factors are largely unknown. We report the first genome-wide association study (GWAS) with HS-Aging pathology as an endophenotype. In collaboration with the Alzheimer's Disease Genetics Consortium, data were analyzed from large autopsy cohorts: (#1) National Alzheimer's Coordinating Center (NACC); (#2) Rush University Religious Orders Study and Memory and Aging Project; (#3) Group Health Research Institute Adult Changes in Thought study; (#4) University of California at Irvine 90+ Study; and (#5) University of Kentucky Alzheimer's Disease Center. Altogether, 363 HS-Aging cases and 2,303 controls, all pathologically confirmed, provided statistical power to test for risk alleles with large effect size. A two-tier study design included GWAS from cohorts #1-3 (Stage I) to identify promising SNP candidates, followed by focused evaluation of particular SNPs in cohorts #4-5 (Stage II). Polymorphism in the ATP-binding cassette, sub-family C member 9 (ABCC9) gene, also known as sulfonylurea receptor 2, was associated with HS-Aging pathology. In the meta-analyzed Stage I GWAS, ABCC9 polymorphisms yielded the lowest p values, and factoring in the Stage II results, the meta-analyzed risk SNP (rs704178:G) attained genome-wide statistical significance (p = 1.4 × 10(-9)), with odds ratio (OR) of 2.13 (recessive mode of inheritance). For SNPs previously linked to hippocampal sclerosis, meta-analyses of Stage I results show OR = 1.16 for rs5848 (GRN) and OR = 1.22 rs1990622 (TMEM106B), with the risk alleles as previously described. Sulfonylureas, a widely prescribed drug class used to treat diabetes, also modify human ABCC9 protein function. A subsample of patients from the NACC database (n = 624) were identified who were older than age 85 at death with known drug history. Controlling for important confounders such as diabetes itself, exposure to a sulfonylurea drug was associated with risk for HS-Aging pathology (p = 0.03). Thus, we describe a novel and targetable dementia risk factor.
Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Hipocampo/patologia , Polimorfismo de Nucleotídeo Único , Receptores de Sulfonilureias/genética , Idoso de 80 Anos ou mais , Envelhecimento/efeitos dos fármacos , Estudos de Coortes , Bases de Dados como Assunto , Endofenótipos , Estudo de Associação Genômica Ampla , Hipocampo/efeitos dos fármacos , Humanos , Esclerose/genética , Esclerose/patologia , Compostos de Sulfonilureia/efeitos adversos , Compostos de Sulfonilureia/uso terapêuticoRESUMO
AIMS: To evaluate the relationship between self-reported head injury and cognitive impairment, dementia, mortality, and Alzheimer's disease (AD)-type pathological changes. METHODS: Clinical and neuropathological data from participants enrolled in a longitudinal study of aging and cognition (n = 649) were analyzed to assess the chronic effects of self-reported head injury. RESULTS: The effect of self-reported head injury on the clinical state depended on the age at assessment: for a 1-year increase in age, the OR for the transition to clinical mild cognitive impairment (MCI) at the next visit for participants with a history of head injury was 1.21 and 1.34 for the transition from MCI to dementia. Without respect to age, head injury increased the odds of mortality (OR = 1.54). Moreover, it increased the odds of a pathological diagnosis of AD for men (OR = 1.47) but not women (OR = 1.18). Men with a head injury had higher mean amyloid plaque counts in the neocortex and entorhinal cortex than men without. CONCLUSIONS: Self-reported head injury is associated with earlier onset, increased risk of cognitive impairment and dementia, increased risk of mortality, and AD-type pathological changes.
Assuntos
Doença de Alzheimer/epidemiologia , Disfunção Cognitiva/epidemiologia , Traumatismos Craniocerebrais/epidemiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Encéfalo/patologia , Concussão Encefálica/epidemiologia , Concussão Encefálica/patologia , Disfunção Cognitiva/patologia , Estudos de Coortes , Traumatismos Craniocerebrais/patologia , Escolaridade , Feminino , Humanos , Modelos Lineares , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Inconsciência/epidemiologia , Inconsciência/patologiaRESUMO
The serine/threonine Pim kinases are overexpressed in solid cancers and hematologic malignancies and promote cell growth and survival. Here, we find that a novel Pim kinase inhibitor, SMI-4a, or Pim-1 siRNA blocked the rapamycin-sensitive mammalian target of rapamycin (mTORC1) activity by stimulating the phosphorylation and thus activating the mTORC1 negative regulator AMP-dependent protein kinase (AMPK). Mouse embryonic fibroblasts (MEFs) deficient for all three Pim kinases [triple knockout (TKO) MEFs] demonstrated activated AMPK driven by elevated ratios of AMPATP relative to wild-type MEFs. Consistent with these findings, TKO MEFs were found to grow slowly in culture and have decreased rates of protein synthesis secondary to a diminished amount of 5'-cap-dependent translation. Pim-3 expression alone in TKO MEFs was sufficient to reverse AMPK activation, increase protein synthesis, and drive MEF growth similar to wild type. Pim-3 expression was found to markedly increase the protein levels of both c-Myc and the peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), enzymes capable of regulating glycolysis and mitochondrial biogenesis, which were diminished in TKO MEFs. Overexpression of PGC-1α in TKO MEFs elevated ATP levels and inhibited the activation of AMPK. These results demonstrate the Pim kinase-mediated control of energy metabolism and thus regulation of AMPK activity. We identify an important role for Pim-3 in modulating c-Myc and PGC-1α protein levels and cell growth.
Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Fibroblastos/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Células K562 , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismoRESUMO
Neuroblastoma (NB), the most common cancer in infants and the most common solid tumor outside the brain in children, grows aggressively and responds poorly to current therapies. We have identified a new drug (opaganib, also known as ABC294640) that modulates sphingolipid metabolism by inhibiting the synthesis of sphingosine 1-phosphate (S1P) by sphingosine kinase-2 and elevating dihydroceramides by inhibition of dihydroceramide desaturase. The present studies sought to determine the potential therapeutic activity of opaganib in cell culture and xenograft models of NB. Cytotoxicity assays demonstrated that NB cells, including cells with amplified MYCN, are effectively killed by opaganib concentrations well below those that accumulate in tumors in vivo. Opaganib was shown to cause dose-dependent decreases in S1P and hexosylceramide levels in Neuro-2a cells, while concurrently elevating levels of dihydroceramides. As with other tumor cells, opaganib reduced c-Myc and Mcl-1 protein levels in Neuro-2a cells, and also reduced the expression of the N-Myc protein. The in vivo growth of xenografts of human SK-N-(BE)2 cells with amplified MYCN was suppressed by oral administration of opaganib at doses that are well tolerated in mice. Combining opaganib with temozolomide plus irinotecan, considered the backbone for therapy of relapsed or refractory NB, resulted in increased antitumor activity in vivo compared with temozolomide plus irinotecan or opaganib alone. Mice did not lose additional weight when opaganib was combined with temozolomide plus irinotecan, indicating that the combination is well tolerated. Opaganib has additive antitumor activity toward Neuro-2a tumors when combined with the checkpoint inhibitor anti-CTLA-4 antibody; however, the combination of opaganib with anti-PD-1 or anti-PD-L1 antibodies did not provide increased antitumor activity over that seen with opaganib alone. Overall, the data demonstrate that opaganib modulates sphingolipid metabolism and intracellular signaling in NB cells and inhibits NB tumor growth alone and in combination with other anticancer drugs. Amplified MYCN does not confer resistance to opaganib, and, in fact, the drug attenuates the expression of both c-Myc and N-Myc. The safety of opaganib has been established in clinical trials with adults with advanced cancer or severe COVID-19, and so opaganib has excellent potential for treating patients with NB, particularly in combination with temozolomide and irinotecan or anti-CTLA-4 antibody.