Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Biol ; 21(9): e3002319, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37747915

RESUMO

Spontaneous Ca2+ transients of neural cells is a hallmark of the developing nervous system. It is widely accepted that chemical signals, like neurotransmitters, contribute to spontaneous Ca2+ transients in the nervous system. Here, we reveal an additional mechanism of spontaneous Ca2+ transients that is mechanosensitive in the peripheral nervous system (PNS) using intravital imaging of growing dorsal root ganglia (DRG) in zebrafish embryos. GCaMP6s imaging shows that developing DRG satellite glia contain distinct spontaneous Ca2+ transients, classified into simultaneous, isolated, and microdomains. Longitudinal analysis over days in development demonstrates that as DRG satellite glia become more synchronized, isolated Ca2+ transients remain constant. Using a chemical screen, we identify that Ca2+ transients in DRG glia are dependent on mechanical properties, which we confirmed using an experimental application of mechanical force. We find that isolated spontaneous Ca2+ transients of the glia during development is altered by manipulation of mechanosensitive protein Piezo1, which is expressed in the developing ganglia. In contrast, simultaneous Ca2+ transients of DRG satellite glia is not Piezo1-mediated, thus demonstrating that distinct mechanisms mediate subtypes of spontaneous Ca2+ transients. Activating Piezo1 eventually impacts the cell abundance of DRG cells and behaviors that are driven by DRG neurons. Together, our results reveal mechanistically distinct subtypes of Ca2+ transients in satellite glia and introduce mechanobiology as a critical component of spontaneous Ca2+ transients in the developing PNS.


Assuntos
Cálcio , Gânglios Espinais , Animais , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Peixe-Zebra/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Canais Iônicos/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
PLoS Biol ; 20(12): e3001902, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516133

RESUMO

The responsibility for promoting diversity, equity, inclusion, and belonging (DEIB) too often falls on scientists from minority groups. Here, I provide a list of potential strategies that members of the majority can easily do to step up and get involved in DEIB.


Assuntos
Diversidade Cultural , Diversidade, Equidade, Inclusão , Grupos Minoritários
3.
PLoS Biol ; 19(11): e3001444, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34793438

RESUMO

Glial cells are essential for functionality of the nervous system. Growing evidence underscores the importance of astrocytes; however, analogous astroglia in peripheral organs are poorly understood. Using confocal time-lapse imaging, fate mapping, and mutant genesis in a zebrafish model, we identify a neural crest-derived glial cell, termed nexus glia, which utilizes Meteorin signaling via Jak/Stat3 to drive differentiation and regulate heart rate and rhythm. Nexus glia are labeled with gfap, glast, and glutamine synthetase, markers that typically denote astroglia cells. Further, analysis of single-cell sequencing datasets of human and murine hearts across ages reveals astrocyte-like cells, which we confirm through a multispecies approach. We show that cardiac nexus glia at the outflow tract are critical regulators of both the sympathetic and parasympathetic system. These data establish the crucial role of glia on cardiac homeostasis and provide a description of nexus glia in the PNS.


Assuntos
Astrócitos/citologia , Coração/embriologia , Neuroglia/citologia , Animais , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Coração/fisiologia , Frequência Cardíaca/fisiologia , Ventrículos do Coração/metabolismo , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Sistema Nervoso Parassimpático/fisiologia , Transdução de Sinais , Especificidade da Espécie , Sistema Nervoso Simpático/fisiologia , Peixe-Zebra
4.
J Neurosci ; 41(31): 6617-6636, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34131031

RESUMO

Axons navigate through the embryo to construct a functional nervous system. A missing part of the axon navigation puzzle is how a single axon traverses distinct anatomic choice points through its navigation. The dorsal root ganglia (DRG) neurons experience such choice points. First, they navigate to the dorsal root entry zone (DREZ), then halt navigation in the peripheral nervous system to invade the spinal cord, and then reinitiate navigation inside the CNS. Here, we used time-lapse super-resolution imaging in zebrafish DRG pioneer neurons to investigate how embryonic axons control their cytoskeleton to navigate to and invade at the correct anatomic position. We found that invadopodia components form in the growth cone even during filopodia-based navigation, but only stabilize when the axon is at the spinal cord entry location. Further, we show that intermediate levels of DCC and cAMP, as well as Rac1 activation, subsequently engage an axon invasion brake. Our results indicate that actin-based invadopodia components form in the growth cone and disruption of the invasion brake causes axon entry defects and results in failed behavioral responses, thereby demonstrating the importance of regulating distinct actin populations during navigational challenges.SIGNIFICANCE STATEMENT Correct spatiotemporal navigation of neuronal growth cones is dependent on extracellular navigational cues and growth cone dynamics. Here, we link dcc-mediated signaling to actin-based invadopodia and filopodia dynamics during pathfinding and entry into the spinal cord using an in vivo model of dorsal root ganglia (DRG) sensory axons. We reveal a molecularly-controlled brake on invadopodia stabilization until the sensory neuron growth cone is present at the dorsal root entry zone (DREZ), which is ultimately essential for growth cone entry into the spinal cord and behavioral response.


Assuntos
Orientação de Axônios/fisiologia , Receptor DCC/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Gânglios Espinais/embriologia , Peixe-Zebra
5.
Development ; 146(5)2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30760484

RESUMO

Super-resolution microscopy is broadening our in-depth understanding of cellular structure. However, super-resolution approaches are limited, for numerous reasons, from utilization in longer-term intravital imaging. We devised a combinatorial imaging technique that combines deconvolution with stepwise optical saturation microscopy (DeSOS) to circumvent this issue and image cells in their native physiological environment. Other than a traditional confocal or two-photon microscope, this approach requires no additional hardware. Here, we provide an open-access application to obtain DeSOS images from conventional microscope images obtained at low excitation powers. We show that DeSOS can be used in time-lapse imaging to generate super-resolution movies in zebrafish. DeSOS was also validated in live mice. These movies uncover that actin structures dynamically remodel to produce a single pioneer axon in a 'top-down' scaffolding event. Further, we identify an F-actin population - stable base clusters - that orchestrate that scaffolding event. We then identify that activation of Rac1 in pioneer axons destabilizes stable base clusters and disrupts pioneer axon formation. The ease of acquisition and processing with this approach provides a universal technique for biologists to answer questions in living animals.


Assuntos
Axônios/fisiologia , Microscopia Confocal/métodos , Microscopia de Vídeo/métodos , Actinas , Animais , Animais Geneticamente Modificados , Processamento de Imagem Assistida por Computador , Lasers , Camundongos , Camundongos Transgênicos , Distribuição Normal , Fótons , Razão Sinal-Ruído , Peixe-Zebra
6.
PLoS Biol ; 17(2): e3000159, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30794533

RESUMO

Microglia are central nervous system (CNS)-resident cells. Their ability to migrate outside of the CNS, however, is not understood. Using time-lapse imaging in an obstetrical brachial plexus injury (OBPI) model, we show that microglia squeeze through the spinal boundary and emigrate to peripheral spinal roots. Although both macrophages and microglia respond, microglia are the debris-clearing cell. Once outside the CNS, microglia re-enter the spinal cord in an altered state. These peripheral nervous system (PNS)-experienced microglia can travel to distal CNS areas from the injury site, including the brain, with debris. This emigration is balanced by two mechanisms-induced emigration via N-methyl-D-aspartate receptor (NMDA) dependence and restriction via contact-dependent cellular repulsion with macrophages. These discoveries open the possibility that microglia can migrate outside of their textbook-defined regions in disease states.


Assuntos
Macrófagos/metabolismo , Microglia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Traumatismos da Medula Espinal/metabolismo , Raízes Nervosas Espinhais/metabolismo , Animais , Animais Geneticamente Modificados , Plexo Braquial/lesões , Plexo Braquial/metabolismo , Comunicação Celular , Movimento Celular , Embrião não Mamífero , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Macrófagos/patologia , Microglia/patologia , Modelos Biológicos , Receptores de N-Metil-D-Aspartato/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Raízes Nervosas Espinhais/lesões , Imagem com Lapso de Tempo , Peixe-Zebra
7.
PLoS Genet ; 15(6): e1008228, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220078

RESUMO

Dendrite growth is constrained by a self-avoidance response that induces retraction but the downstream pathways that balance these opposing mechanisms are unknown. We have proposed that the diffusible cue UNC-6(Netrin) is captured by UNC-40(DCC) for a short-range interaction with UNC-5 to trigger self-avoidance in the C. elegans PVD neuron. Here we report that the actin-polymerizing proteins UNC-34(Ena/VASP), WSP-1(WASP), UNC-73(Trio), MIG-10(Lamellipodin) and the Arp2/3 complex effect dendrite retraction in the self-avoidance response mediated by UNC-6(Netrin). The paradoxical idea that actin polymerization results in shorter rather than longer dendrites is explained by our finding that NMY-1 (non-muscle myosin II) is necessary for retraction and could therefore mediate this effect in a contractile mechanism. Our results also show that dendrite length is determined by the antagonistic effects on the actin cytoskeleton of separate sets of effectors for retraction mediated by UNC-6(Netrin) versus outgrowth promoted by the DMA-1 receptor. Thus, our findings suggest that the dendrite length depends on an intrinsic mechanism that balances distinct modes of actin assembly for growth versus retraction.


Assuntos
Actinas/genética , Proteínas de Caenorhabditis elegans/genética , Células Dendríticas/metabolismo , Netrinas/genética , Neurônios/metabolismo , Citoesqueleto de Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Membrana/genética , Cadeias Pesadas de Miosina/genética , Proteínas do Tecido Nervoso/genética , Miosina não Muscular Tipo IIB/genética
8.
PLoS Genet ; 13(4): e1006712, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28379965

RESUMO

Somatosensory information from the periphery is routed to the spinal cord through centrally-projecting sensory axons that cross into the central nervous system (CNS) via the dorsal root entry zone (DREZ). The glial cells that ensheath these axons ensure rapid propagation of this information. Despite the importance of this glial-axon arrangement, how this afferent nerve is assembled during development is unknown. Using in vivo, time-lapse imaging we show that as centrally-projecting pioneer axons from dorsal root ganglia (DRG) enter the spinal cord, they initiate expression of the cytokine TNFalpha. This induction coincides with ensheathment of these axons by associated glia via a TNF receptor 2 (TNFR2)-mediated process. This work identifies a signaling cascade that mediates peripheral glial-axon interactions and it functions to ensure that DRG afferent projections are ensheathed after pioneer axons complete their navigation, which promotes efficient somatosensory neural function.


Assuntos
Neuroglia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Raízes Nervosas Espinhais/metabolismo , Fator de Necrose Tumoral alfa/genética , Animais , Astrócitos/metabolismo , Axônios/metabolismo , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Gânglios Espinais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Neuroglia/citologia , Neurônios Aferentes/metabolismo , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , Transdução de Sinais , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Raízes Nervosas Espinhais/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/biossíntese , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
9.
Opt Lett ; 44(16): 3928-3931, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415514

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) provides additional contrast for fluorophores with overlapping emission spectra. The phasor approach to FLIM greatly reduces the complexity of FLIM analysis and enables a useful image segmentation technique by selecting adjacent phasor points and labeling their corresponding pixels with different colors. This phasor labeling process, however, is empirical and could lead to biased results. In this Letter, we present a novel and unbiased approach to automate the phasor labeling process using an unsupervised machine learning technique, i.e., K-means clustering. In addition, we provide an open-source, user-friendly program that enables users to easily employ the proposed approach. We demonstrate successful image segmentation on 2D and 3D FLIM images of fixed cells and living animals acquired with two different FLIM systems. Finally, we evaluate how different parameters affect the segmentation result and provide a guideline for users to achieve optimal performance.

10.
PLoS Biol ; 12(9): e1001961, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25268888

RESUMO

Rapid conduction of action potentials along motor axons requires that oligodendrocytes and Schwann cells myelinate distinct central and peripheral nervous system (CNS and PNS) domains along the same axon. Despite the importance of this arrangement for nervous system function, the mechanisms that establish and maintain this precise glial segregation at the motor exit point (MEP) transition zone are unknown. Using in vivo time-lapse imaging in zebrafish, we observed that prior to myelination, oligodendrocyte progenitor cells (OPCs) extend processes into the periphery via the MEP and immediately upon contact with spinal motor root glia retract back into the spinal cord. Characterization of the peripheral cell responsible for repelling OPC processes revealed that it was a novel, CNS-derived population of glia we propose calling MEP glia. Ablation of MEP glia resulted in the absence of myelinating glia along spinal motor root axons and an immediate breach of the MEP by OPCs. Taken together, our results identify a novel population of CNS-derived peripheral glia located at the MEP that selectively restrict the migration of OPCs into the periphery via contact-mediated inhibition.


Assuntos
Neurônios Motores/citologia , Oligodendroglia/citologia , Medula Espinal/citologia , Células-Tronco/citologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Axônios/ultraestrutura , Diferenciação Celular , Linhagem da Célula/genética , Movimento Celular , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Neurônios Motores/metabolismo , Bainha de Mielina/ultraestrutura , Oligodendroglia/metabolismo , Especificidade de Órgãos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Células-Tronco/metabolismo , Imagem com Lapso de Tempo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Glia ; 64(7): 1138-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27029762

RESUMO

In the mature vertebrate nervous system, central and peripheral nervous system (CNS and PNS, respectively) GLIA myelinate distinct motor axon domains at the motor exit point transition zone (MEP TZ). How these cells preferentially associate with and myelinate discrete, non-overlapping CNS versus PNS axonal segments, is unknown. Using in vivo imaging and genetic cell ablation in zebrafish, we demonstrate that radial glia restrict migration of PNS glia into the spinal cord during development. Prior to development of radial glial endfeet, peripheral cells freely migrate back and forth across the MEP TZ. However, upon maturation, peripherally located cells never enter the CNS. When we ablate radial glia, peripheral glia ectopically migrate into the spinal cord during developmental stages when they would normally be restricted. These findings demonstrate that radial glia contribute to both CNS and PNS development and control the unidirectional movement of glial cell types across the MEP TZ early in development. GLIA 2016. GLIA 2016;64:1138-1153.


Assuntos
Movimento Celular/fisiologia , Sistema Nervoso/citologia , Neuroglia/fisiologia , Medula Espinal/citologia , Animais , Animais Geneticamente Modificados , Embrião não Mamífero , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/embriologia , Neuroglia/ultraestrutura , Medula Espinal/embriologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Glia ; 64(7): 1170-89, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27100776

RESUMO

Radial glial cells are presumptive neural stem cells (NSCs) in the developing nervous system. The direct requirement of radial glia for the generation of a diverse array of neuronal and glial subtypes, however, has not been tested. We employed two novel transgenic zebrafish lines and endogenous markers of NSCs and radial glia to show for the first time that radial glia are essential for neurogenesis during development. By using the gfap promoter to drive expression of nuclear localized mCherry we discerned two distinct radial glial-derived cell types: a major nestin+/Sox2+ subtype with strong gfap promoter activity and a minor Sox2+ subtype lacking this activity. Fate mapping studies in this line indicate that gfap+ radial glia generate later-born CoSA interneurons, secondary motorneurons, and oligodendroglia. In another transgenic line using the gfap promoter-driven expression of the nitroreductase enzyme, we induced cell autonomous ablation of gfap+ radial glia and observed a reduction in their specific derived lineages, but not Blbp+ and Sox2+/gfap-negative NSCs, which were retained and expanded at later larval stages. Moreover, we provide evidence supporting classical roles of radial glial in axon patterning, blood-brain barrier formation, and locomotion. Our results suggest that gfap+ radial glia represent the major NSC during late neurogenesis for specific lineages, and possess diverse roles to sustain the structure and function of the spinal cord. These new tools will both corroborate the predicted roles of astroglia and reveal novel roles related to development, physiology, and regeneration in the vertebrate nervous system. GLIA 2016;64:1170-1189.


Assuntos
Proteína Glial Fibrilar Ácida/metabolismo , Neurogênese/fisiologia , Neurônios/fisiologia , Medula Espinal/citologia , Fatores Etários , Animais , Animais Geneticamente Modificados , Apoptose/genética , Diferenciação Celular , Proliferação de Células/genética , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Proteína Glial Fibrilar Ácida/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Locomoção/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Medula Espinal/embriologia , Fatores de Tempo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteína Vermelha Fluorescente
13.
Artigo em Inglês | MEDLINE | ID: mdl-38858073

RESUMO

Neural cells are segregated into their distinct central nervous system (CNS) and peripheral nervous system (PNS) domains. However, at specialized regions of the nervous system known as transition zones (TZs), glial cells from both the CNS and PNS are uniquely present with other specialized TZ cells. Herein we review the current understanding of vertebrate TZ cells. The article discusses the distinct cells at vertebrate TZs with a focus on cells that are located on the peripheral side of the spinal cord TZs. In addition to the developmental origin and differentiation of these TZ cells, the functional importance and the role of TZ cells in disease are highlighted. This article also reviews the common and unique features of vertebrate TZs from zebrafish to mice. We propose challenges and open questions in the field that could lead to exciting insights in the field of glial biology.

14.
Curr Opin Neurobiol ; 78: 102669, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577179

RESUMO

The evolutionary conservation of glial cells has been appreciated since Ramon y Cajal and Del Rio Hortega first described the morphological features of cells in the nervous system. We now appreciate that glial cells have essential roles throughout life in most nervous systems. The field of glial cell biology has grown exponentially in the last ten years. This new wealth of knowledge has been aided by seminal findings in non-mammalian model systems. Ultimately, such concepts help us to understand glia in mammalian nervous systems. Rather than summarizing the field of glial biology, I will first briefly introduce glia in non-mammalian models systems. Then, highlight seminal findings across the glial field that utilized non-mammalian model systems to advance our understanding of the mammalian nervous system. Finally, I will call attention to some recent findings that introduce new questions about glial cell biology that will be investigated for years to come.


Assuntos
Evolução Biológica , Neuroglia , Neuroglia/fisiologia , Modelos Biológicos
15.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993267

RESUMO

The overproduction of cells and subsequent production of debris is a universal principle of neurodevelopment. Here we show an additional feature of the developing nervous system that causes neural debris - promoted by the sacrificial nature of embryonic microglia that irreversibly become phagocytic after clearing other neural debris. Described as long-lived, microglia colonize the embryonic brain and persist into adulthood. Using transgenic zebrafish to investigate the microglia debris during brain construction, we identified that unlike other neural cell-types that die in developmental stages after they have expanded, necroptotic-dependent microglial debris is prevalent when microglia are expanding in the zebrafish brain. Time-lapse imaging of microglia demonstrates that this debris is cannibalized by other microglia. To investigate features that promote microglia death and cannibalism, we used time-lapse imaging and fate-mapping strategies to track the lifespan of individual developmental microglia. These approaches revealed that instead of embryonic microglia being long-lived cells that completely digest their phagocytic debris, once most developmental microglia in zebrafish become phagocytic they eventually die, including ones that are cannibalistic. These results establish a paradox -- which we tested by increasing neural debris and manipulating phagocytosis -- that once most microglia in the embryo become phagocytic, they die, create debris and then are cannibalized by other microglia, resulting in more phagocytic microglia that are destined to die.

16.
Front Bioinform ; 3: 1335413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187910

RESUMO

Introduction: Although a powerful biological imaging technique, fluorescence lifetime imaging microscopy (FLIM) faces challenges such as a slow acquisition rate, a low signal-to-noise ratio (SNR), and high cost and complexity. To address the fundamental problem of low SNR in FLIM images, we demonstrate how to use pre-trained convolutional neural networks (CNNs) to reduce noise in FLIM measurements. Methods: Our approach uses pre-learned models that have been previously validated on large datasets with different distributions than the training datasets, such as sample structures, noise distributions, and microscopy modalities in fluorescence microscopy, to eliminate the need to train a neural network from scratch or to acquire a large training dataset to denoise FLIM data. In addition, we are using the pre-trained networks in the inference stage, where the computation time is in milliseconds and accuracy is better than traditional denoising methods. To separate different fluorophores in lifetime images, the denoised images are then run through an unsupervised machine learning technique named "K-means clustering". Results and Discussion: The results of the experiments carried out on in vivo mouse kidney tissue, Bovine pulmonary artery endothelial (BPAE) fixed cells that have been fluorescently labeled, and mouse kidney fixed samples that have been fluorescently labeled show that our demonstrated method can effectively remove noise from FLIM images and improve segmentation accuracy. Additionally, the performance of our method on out-of-distribution highly scattering in vivo plant samples shows that it can also improve SNR in challenging imaging conditions. Our proposed method provides a fast and accurate way to segment fluorescence lifetime images captured using any FLIM system. It is especially effective for separating fluorophores in noisy FLIM images, which is common in in vivo imaging where averaging is not applicable. Our approach significantly improves the identification of vital biologically relevant structures in biomedical imaging applications.

17.
Mol Cell Neurosci ; 46(1): 308-17, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20971193

RESUMO

PVD and FLP sensory neurons envelope the body of the C. elegans adult with a highly branched network of thin sensory processes. Both PVD and FLP neurons are mechanosensors. PVD is known to mediate the response to high threshold mechanical stimuli. Thus PVD and FLP neurons are similar in both morphology and function to mammalian nociceptors. To better understand the function of these neurons we generated strains lacking them. Behavioral analysis shows that PVD and FLP regulate movement under normal growth conditions, as animals lacking these neurons demonstrate higher dwelling behavior. In addition, PVD--whose thin branches project across the body-wall muscles--may have a role in proprioception, as ablation of PVD leads to defective posture. Moreover, movement-dependent calcium transients are seen in PVD, a response that requires MEC-10, a subunit of the mechanosensory DEG/ENaC channel that is also required for maintaining wild-type posture. Hence, PVD senses both noxious and innocuous signals to regulate C. elegans behavior, and thus combines the functions of multiple mammalian somatosensory neurons. Finally, strong mechanical stimulation leads to inhibition of egg-laying, and this response also depends on PVD and FLP neurons. Based on all these results we suggest that noxious signals perceived by PVD and FLP promote an escape behavior consisting of increased speed, reduced pauses and reversals, and inhibition of egg-laying.


Assuntos
Caenorhabditis elegans/anatomia & histologia , Células Receptoras Sensoriais/química , Células Receptoras Sensoriais/fisiologia , Tato/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Reação de Fuga/fisiologia , Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Atividade Motora , Nociceptores/citologia , Nociceptores/fisiologia , Estimulação Física
18.
Front Cell Neurosci ; 16: 893629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734217

RESUMO

Oligodendrocytes are the myelinating cell of the CNS and are critical for the functionality of the nervous system. In the packed CNS, we know distinct profiles of oligodendrocytes are present. Here, we used intravital imaging in zebrafish to identify a distinct oligodendrocyte lineage cell (OLC) that resides on the dorsal root ganglia sensory neurons in the spinal cord. Our profiling of OLC cellular dynamics revealed a distinct cell cluster that interacts with peripheral sensory neurons at the dorsal root entry zone (DREZ). With pharmacological, physical and genetic manipulations, we show that the entry of dorsal root ganglia pioneer axons across the DREZ is important to produce sensory located oligodendrocyte lineage cells. These oligodendrocyte lineage cells on peripherally derived sensory neurons display distinct processes that are stable and do not express mbpa. Upon their removal, sensory behavior related to the DRG neurons is abolished. Together, these data support the hypothesis that peripheral neurons at the DREZ can also impact oligodendrocyte development.

19.
Nat Neurosci ; 25(7): 849-864, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710983

RESUMO

Microglia are the resident macrophages of the CNS that serve critical roles in brain construction. Although human brains contain microglia by 4 weeks gestation, an understanding of the earliest microglia that seed the brain during its development remains unresolved. Using time-lapse imaging in zebrafish, we discovered a mrc1a+ microglia precursor population that seeds the brain before traditionally described microglia. These early microglia precursors are dependent on lymphatic vasculature that surrounds the brain and are independent of pu1+ yolk sac-derived microglia. Single-cell RNA-sequencing datasets reveal Mrc1+ microglia in the embryonic brains of mice and humans. We then show in zebrafish that these early mrc1a+ microglia precursors preferentially expand during pathophysiological states in development. Taken together, our results identify a critical role of lymphatics in the microglia precursors that seed the early embryonic brain.


Assuntos
Microglia , Peixe-Zebra , Animais , Encéfalo/fisiologia , Humanos , Microglia/metabolismo , Saco Vitelino/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
Dev Biol ; 345(1): 18-33, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20537990

RESUMO

Nociceptive neurons innervate the skin with complex dendritic arbors that respond to pain-evoking stimuli such as harsh mechanical force or extreme temperatures. Here we describe the structure and development of a model nociceptor, the PVD neuron of C. elegans, and identify transcription factors that control morphogenesis of the PVD dendritic arbor. The two PVD neuron cell bodies occupy positions on either the right (PVDR) or left (PVDL) sides of the animal in posterior-lateral locations. Imaging with a GFP reporter revealed a single axon projecting from the PVD soma to the ventral cord and an elaborate, highly branched arbor of dendritic processes that envelop the animal with a web-like array directly beneath the skin. Dendritic branches emerge in a step-wise fashion during larval development and may use an existing network of peripheral nerve cords as guideposts for key branching decisions. Time-lapse imaging revealed that branching is highly dynamic with active extension and withdrawal and that PVD branch overlap is prevented by a contact-dependent self-avoidance, a mechanism that is also employed by sensory neurons in other organisms. With the goal of identifying genes that regulate dendritic morphogenesis, we used the mRNA-tagging method to produce a gene expression profile of PVD during late larval development. This microarray experiment identified>2,000 genes that are 1.5X elevated relative to all larval cells. The enriched transcripts encode a wide range of proteins with potential roles in PVD function (e.g., DEG/ENaC and Trp channels) or development (e.g., UNC-5 and LIN-17/frizzled receptors). We used RNAi and genetic tests to screen 86 transcription factors from this list and identified eleven genes that specify PVD dendritic structure. These transcription factors appear to control discrete steps in PVD morphogenesis and may either promote or limit PVD branching at specific developmental stages. For example, time-lapse imaging revealed that MEC-3 (LIM homeodomain) is required for branch initiation in early larval development whereas EGL-44 (TEAD domain) prevents ectopic PVD branching in the adult. A comparison of PVD-enriched transcripts to a microarray profile of mammalian nociceptors revealed homologous genes with potentially shared nociceptive functions. We conclude that PVD neurons display striking structural, functional and molecular similarities to nociceptive neurons from more complex organisms and can thus provide a useful model system in which to identify evolutionarily conserved determinants of nociceptor fate.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Perfilação da Expressão Gênica , Neurônios/metabolismo , Nociceptores/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dendritos/genética , Dendritos/metabolismo , Microscopia Confocal/métodos , Microscopia de Vídeo/métodos , Simulação de Dinâmica Molecular , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA