Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pain ; 16: 1744806920971914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33241748

RESUMO

Clinically, pain has an uneven incidence throughout lifespan and impacts more on the elderly. In contrast, preclinical models of pathological pain have typically used juvenile or young adult animals to highlight the involvement of glial populations, proinflammatory cytokines, and chemokines in the onset and maintenance of pathological signalling in the spinal dorsal horn. The potential impact of this mismatch is also complicated by the growing appreciation that the aged central nervous system exists in a state of chronic inflammation because of enhanced proinflammatory cytokine/chemokine signalling and glial activation. To address this issue, we investigated the impact of aging on the expression of genes that have been associated with neuropathic pain, glial signalling, neurotransmission and neuroinflammation. We used qRT-PCR to quantify gene expression and focussed on the dorsal horn of the spinal cord as this is an important perturbation site in neuropathic pain. To control for global vs region-specific age-related changes in gene expression, the ventral half of the spinal cord was examined. Our results show that expression of proinflammatory chemokines, pattern recognition receptors, and neurotransmitter system components was significantly altered in aged (24-32 months) versus young mice (2-4 months). Notably, the magnitude and direction of these changes were spinal-cord region dependent. For example, expression of the chemokine, Cxcl13, increased 119-fold in dorsal spinal cord, but only 2-fold in the ventral spinal cord of old versus young mice. Therefore, we propose the dorsal spinal cord of old animals is subject to region-specific alterations that prime circuits for the development of pathological pain, potentially in the absence of the peripheral triggers normally associated with these conditions.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Regulação da Expressão Gênica no Desenvolvimento , Vértebras Lombares/metabolismo , Vértebras Lombares/patologia , Neuralgia/genética , Animais , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neuroglia/patologia , Transdução de Sinais/genética
2.
Addict Biol ; 23(2): 631-642, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28612502

RESUMO

MicroRNAs (miRNAs) within the ventral and dorsal striatum have been shown to regulate addiction-relevant behaviours. However, it is unclear how cocaine experience alone can alter the expression of addiction-relevant miRNAs within striatal subregions. Further, it is not known whether differential expression of miRNAs in the striatum contributes to individual differences in addiction vulnerability. We first examined the effect of cocaine self-administration on the expression of miR-101b, miR-137, miR-212 and miR-132 in nucleus accumbens core and nucleus accumbens shell (NAcSh), as well as dorsomedial striatum and dorsolateral striatum (DLS). We then examined the expression of these same miRNAs in striatal subregions of animals identified as being 'addiction-prone', either immediately following self-administration training or following extinction and relapse testing. Cocaine self-administration was associated with changes in miRNA expression in a regionally discrete manner within the striatum, with the most marked changes occurring in the nucleus accumbens core. When we examined the miRNA profile of addiction-prone rats following self-administration, we observed increased levels of miR-212 in the dorsomedial striatum. After extinction and relapse testing, addiction-prone rats showed significant increases in the expression of miR-101b, miR-137, miR-212 and miR-132 in NAcSh, and miR-137 in the DLS. This study identifies temporally specific changes in miRNA expression consistent with the engagement of distinct striatal subregions across the course of the addiction cycle. Increased dysregulation of miRNA expression in NAcSh and DLS at late stages of the addiction cycle may underlie habitual drug seeking, and may therefore aid in the identification of targets designed to treat addiction.


Assuntos
Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , MicroRNAs/metabolismo , Núcleo Accumbens/metabolismo , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Comportamento de Procura de Droga , Masculino , MicroRNAs/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Autoadministração , Fatores de Tempo , Estriado Ventral/efeitos dos fármacos , Estriado Ventral/metabolismo
3.
Metab Brain Dis ; 28(4): 613-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23832395

RESUMO

Accumulating evidence indicates that hyper-glycaemia is deleterious to brain function, in particular to the hippocampus. It is thought this hippocampal dysfunction may contribute to hyperglycaemia related cognitive impairment, such as that which manifests with diabetes. In the present study, we investigated the effects of diabetes-related hyperglycaemia on hippocampal gene expression, in order to identify potential mechanisms that might be associated with the cognitive dysfunction that develops with diabetes mellitus. Genome-wide gene expression profiling was carried out on the hippocampi from streptozotocin (STZ)-induced diabetic mice, and from vehicle treated control mice. Genes of interest that satisfied expression fold-change and statistical criteria, and that were considered to be potentially associated with cognitive function, were further tested by real time, quantitative polymerase chain reaction (qPCR) analysis. We found that STZ-induced diabetes resulted in decreased hippocampal expression of genes involved in epigenetic regulation and synaptic plasticity, for example, histone deacetylases and glycogen synthase kinase 3 beta (HDACs and GSK3ß). We also found increased expression of genes involved in signalling cascades related to cell growth, cell survival and energy metabolism, such as neurotropic tyrosine kinase receptor type 2, apolipoprotein E, and protein tyrosine phosphatase receptor type (Ntrk2, APOE, PTPRT). To our knowledge this is the first study to demonstrate a gene expression profile implicating epigenetic modifications and alterations of synaptic plasticity associated genes in diabetes mellitus. The present study will improve our understanding of the neural mechanisms that might underpin diabetes-related cognitive dysfunction.


Assuntos
Diabetes Mellitus Experimental/genética , Hipocampo/metabolismo , Histonas/genética , Plasticidade Neuronal/genética , Sinapses/genética , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histonas/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sinapses/metabolismo
4.
Brain Behav ; 13(8): e3064, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37401009

RESUMO

INTRODUCTION: The efferent vestibular system (EVS) is a feedback circuit thought to modulate vestibular afferent activity by inhibiting type II hair cells and exciting calyx-bearing afferents in the peripheral vestibular organs. In a previous study, we suggested EVS activity may contribute to the effects of motion sickness. To determine an association between motion sickness and EVS activity, we examined the effects of provocative motion (PM) on c-Fos expression in brainstem efferent vestibular nucleus (EVN) neurons that are the source of efferent innervation in the peripheral vestibular organs. METHODS: c-Fos is an immediate early gene product expressed in stimulated neurons and is a well-established marker of neuronal activation. To study the effects of PM, young adult C57/BL6 wild-type (WT), aged WT, and young adult transgenic Chat-gCaMP6f mice were exposed to PM, and tail temperature (Ttail ) was monitored using infrared imaging. After PM, we used immunohistochemistry to label EVN neurons to determine any changes in c-Fos expression. All tissue was imaged using laser scanning confocal microscopy. RESULTS: Infrared recording of Ttail during PM indicated that young adult WT and transgenic mice displayed a typical motion sickness response (tail warming), but not in aged WT mice. Similarly, brainstem EVN neurons showed increased expression of c-Fos protein after PM in young adult WT and transgenic mice but not in aged cohorts. CONCLUSION: We present evidence that motion sickness symptoms and increased activation of EVN neurons occur in young adult WT and transgenic mice in response to PM. In contrast, aged WT mice showed no signs of motion sickness and no change in c-Fos expression when exposed to the same provocative stimulus.


Assuntos
Enjoo devido ao Movimento , Camundongos , Animais , Enjoo devido ao Movimento/metabolismo , Neurônios/metabolismo , Núcleos Vestibulares/metabolismo , Neurônios Eferentes/metabolismo , Camundongos Transgênicos
5.
J Gerontol A Biol Sci Med Sci ; 78(6): 920-929, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36840917

RESUMO

Cholinergic circuits in the central nervous system are vulnerable to age-related functional decline, but it is not known if aging impacts cholinergic signaling in the vestibular sensory organs, which are critically important to balance maintenance and visual gaze stability. We have previously shown cholinergic neurotransmission between vestibular efferent terminals and type II mechanosensory hair cells requires the alpha9 (Chrna9) nicotinic receptor subunit. Homozygous knockout of the alpha9 subunit causes vestibulo-ocular reflex adaptation deficits that mirror those observed in aged mice. This prompted examination of cholinergic signaling in the vestibular sensory organs of aged mice. We confirmed older (>24 months) mice had impaired performance in a balance beam task compared to young (3-4 months) adult mice. While there was no qualitative loss of cholinergic axon varicosities in the crista ampullaris of old mice, qPCR analysis revealed reduced expression of nicotinic receptor subunit genes Chrna1, Chrna9, and Chrna10 in the cristae of old relative to young mice. Functionally, single-cell patch clamp recordings taken from type II vestibular hair cells exposed to acetylcholine show reduced conductance through alpha9/10 subunit-containing nicotinic receptors in older mice, despite preserved passive membrane properties and voltage-activated conductances. These findings suggest that cholinergic signaling in the peripheral vestibular sensory organs is vulnerable to aging processes, manifesting in dynamic molecular and functional age-related changes. Given the importance of these organs to our everyday activities, and the dramatic increase in fall incidence in the older, further investigation into the mechanisms of altered peripheral vestibular function in older humans is warranted.


Assuntos
Células Ciliadas Vestibulares , Receptores Nicotínicos , Vestíbulo do Labirinto , Humanos , Camundongos , Animais , Idoso , Camundongos Endogâmicos C57BL , Vestíbulo do Labirinto/metabolismo , Células Ciliadas Vestibulares/metabolismo , Colinérgicos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo
6.
BMC Neurosci ; 13: 125, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23075086

RESUMO

BACKGROUND: Psychological stress, particularly in chronic form, can lead to mood and cognitive dysfunction and is a major risk factor in the development of depressive states. How stress affects the brain to cause psychopathologies is incompletely understood. We sought to characterise potential depression related mechanisms by analysing gene expression and molecular pathways in the infralimbic medial prefrontal cortex (ILmPFC), following a repeated psychological stress paradigm. The ILmPFC is thought to be involved in the processing of emotionally contextual information and in orchestrating the related autonomic responses, and it is one of the brain regions implicated in both stress responses and depression. RESULTS: Genome-wide microarray analysis of gene expression showed sub-chronic restraint stress resulted predominantly in a reduction in transcripts 24 hours after the last stress episode, with 239 genes significantly decreased, while just 24 genes had increased transcript abundance. Molecular pathway analysis using DAVID identified 8 pathways that were significantly enriched in the differentially expressed gene list, with genes belonging to the brain-derived neurotrophic factor - neurotrophin receptor tyrosine kinase 2 (BDNF-Ntrk2) pathway most enriched. Of the three intracellular signalling pathways that are downstream of Ntrk2, real-time quantitative PCR confirmed that only the PI3K-AKT-GSK3B and MAPK/ERK pathways were affected by sub-chronic stress, with the PLCγ pathway unaffected. Interestingly, chronic antidepressant treatment with the selective serotonin reuptake inhibitor, fluoxetine, prevented the stress-induced Ntrk2 and PI3K pathway changes, but it had no effect on the MAPK/ERK pathway. CONCLUSIONS: These findings indicate that abnormal BDNF-Ntrk2 signalling may manifest at a relatively early time point, and is consistent with a molecular signature of depression developing well before depression-like behaviours occur. Targeting this pathway prophylactically, particularly in depression-susceptible individuals, may be of therapeutic benefit.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Fluoxetina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema Límbico/metabolismo , Córtex Pré-Frontal/metabolismo , Estresse Psicológico/patologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Sistema Límbico/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkC/genética , Receptor trkC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
RNA ; 15(12): 2364-74, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19850907

RESUMO

Microdissection techniques have the potential to allow for transcriptome analyses in specific populations of cells that are isolated from heterogeneous tissues such as the nervous system and certain cancers. Problematically, RNA is not stable under the labeling conditions usually needed to identify the cells of interest for microdissection. We have developed an immunolabeling method that utilizes a high salt buffer to stabilize RNA during prolonged antibody incubations. We first assessed RNA integrity by three methods and found that tissue incubated in high salt buffer for at least 20 h yielded RNA of similar quality to that for RNA extracted from fresh-frozen tissue, which is considered highest quality. Notably, the integrity was superior to that for RNA extracted from tissue processed using rapid immunolabeling procedures (5 min total duration). We next established that high salt buffer was compatible with immunolabeling, as demonstrated by immunofluorescent detection of dopamine neurons in the brain. Finally, we laser microdissected dopamine neurons that were immunolabeled using high salt buffer and demonstrated that RNA integrity was preserved. Our described method yields high quality RNA from immunolabeled microdissected cells, an essential requirement for meaningful genomics investigations of normal and pathological cells isolated from complex tissues.


Assuntos
Imuno-Histoquímica/métodos , Lasers , Microdissecção/métodos , RNA Mensageiro/química , RNA Ribossômico/química , Animais , Masculino , Estabilidade de RNA , RNA Mensageiro/genética , RNA Ribossômico/genética , Ratos , Ratos Sprague-Dawley , Transcrição Gênica
8.
Int J Neuropsychopharmacol ; 14(8): 1099-110, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21205431

RESUMO

Reducing the likelihood of relapse represents one of the greatest obstacles in the successful treatment of cocaine addiction. Dysregulation of the synaptic plasticity processes long-term potentiation (LTP) and long-term depression (LTD) is thought to be associated with protracted relapse risk. To improve our understanding of the molecular mechanisms contributing to relapse vulnerability we trained rats (n=52) to self-administer cocaine and phenotyped animals as relapse-vulnerable or relapse-resilient using procedures adapted from Deroche-Gamonet et al. (Science 2004, 305, 1014-1017). Gene expression analysis, targeted at synaptic plasticity-related genes, revealed significant transcript down-regulation in the ventral and dorsal striatum of relapse-vulnerable animals compared to relapse-resilient controls. This included reduced expression of genes encoding proteins implicated in the dendritic translation of synaptic plasticity-related transcripts, the dynamic regulation and trafficking of ionotropic glutamate receptors important for LTP and LTD, along with neuronal surface receptors that initiate downstream signalling pathways associated with synaptic plasticity. Together, our data are consistent with recent reports of an inability to evoke LTD in the striatum of addiction-vulnerable rats. To our knowledge, this is the first study to demonstrate down-regulated synaptic plasticity-associated gene expression not only in the ventral striatum, where the majority of addiction-related synaptic plasticity studies have been conducted, but also in the dorsal striatum of animals categorized as relapse-vulnerable. As these neural correlates were elucidated using an approach incorporating individual behavioural differences, they potentially provide more relevant insight into addiction and assist the development of novel pharmacotherapies to treat relapse.


Assuntos
Comportamento Aditivo/metabolismo , Comportamento Animal/fisiologia , Expressão Gênica/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Comportamento Aditivo/genética , Comportamento Aditivo/patologia , Cocaína/administração & dosagem , Cocaína/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Corpo Estriado/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Masculino , Terapia de Alvo Molecular , Motivação , Proteínas/genética , Ratos , Ratos Sprague-Dawley , Recompensa , Prevenção Secundária , Autoadministração , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Serina-Treonina Quinases TOR/genética
9.
Int J Neuropsychopharmacol ; 14(5): 684-90, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21447232

RESUMO

Orexinergic signalling is critical to drug relapse-like behaviour; however, the CNS sites(s) of action remain unknown. Two candidate brain regions are the paraventricular thalamus (PVT) and ventral tegmental area (VTA). We assessed the effect of intra-PVT or -VTA administration of the orexin-1 receptor (OrxR1) antagonist SB-334867 on discriminative cue-induced cocaine-seeking. Animals received either PVT- or VTA-directed SB-334867 (0, 3 or 6 µg; 0, 1 or 3 µg, respectively) prior to reinstatement testing elicited by presenting cocaine-paired stimuli (S+). The effect of VTA-directed injections of SB-334867 (0 or 3 µg) on locomotor activity was also assessed. Intra-VTA, but not -PVT, SB-334867 dose-dependently attenuated S+-induced reinstatement (3 µg dose, p<0.01). Intra-VTA SB-334867 had no effect on locomotor activity. We conclude that OrxR1 signalling within the VTA, but not the PVT, mediates cue-induced cocaine-seeking behaviour. We hypothesize that blockade of VTA OrxR1 signalling may reduce nucleus accumbens dopamine in response to drug cue presentation.


Assuntos
Benzoxazóis/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/fisiologia , Tálamo/efeitos dos fármacos , Ureia/análogos & derivados , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Sinais (Psicologia) , Inibidores da Captação de Dopamina/farmacologia , Extinção Psicológica/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Naftiridinas , Receptores de Orexina , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Autoadministração , Tálamo/metabolismo , Ureia/farmacologia , Área Tegmentar Ventral/fisiologia
10.
Psychiatry Res ; 282: 112621, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31648143

RESUMO

Alterations in GABAergic interneurons and glutamic acid decarboxylase (GAD) are observed in the brains of people with schizophrenia. Studies also show increased density of interstitial white matter neurons (IWMN), including those containing GAD and somatostatin (SST) in the brain in schizophrenia. Maternal immune activation can be modelled in rodents to investigate the relationship between prenatal exposure to infections and increased risk of developing schizophrenia. We reported that maternal immune activation induced an increase in density of somatostatin-positive IWMN in the adult rat offspring. Here we hypothesised that maternal immune activation induced in pregnant rats by polyinosinic:polycytidylic acid would alter SST and GAD gene expression as well as increase the density of GAD-positive IWMNs in the adult offspring. SST gene expression was significantly reduced in the cingulate cortex of adult offspring exposed to late gestation maternal immune activation. There was no change in cortical GAD gene expression nor GAD-positive IWMN density in adults rats exposed to maternal immune activation at either early or late gestation. This suggests that our model of maternal immune activation induced by prenatal exposure of rats to polyinosinic:polycytidylic acid during late gestation is able to recapitulate changes in SST but not other GABAergic neuropathologies observed in schizophrenia.


Assuntos
Neurônios GABAérgicos , Expressão Gênica/fisiologia , Glutamato Descarboxilase/metabolismo , Giro do Cíngulo , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Somatostatina/metabolismo , Substância Branca , Animais , Modelos Animais de Doenças , Feminino , Neurônios GABAérgicos/imunologia , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/genética , Giro do Cíngulo/imunologia , Giro do Cíngulo/metabolismo , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Wistar , Esquizofrenia/genética , Esquizofrenia/imunologia , Esquizofrenia/metabolismo , Somatostatina/genética , Substância Branca/imunologia , Substância Branca/metabolismo
11.
Curr Aging Sci ; 11(2): 108-117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30777575

RESUMO

BACKGROUND: Deterioration in vestibular function occurs with ageing and is linked to age-related falls. Sensory hair cells located in the inner ear vestibular labyrinth are critical to vestibular function. Vestibular hair cells rely predominantly on oxidative phosphorylation (OXPHOS) for energy production and contain numerous mitochondria. Mitochondrial DNA (mtDNA) mutations and perturbed energy production are associated with the ageing process. OBJECTIVE: We investigated the effects of ageing on mtDNA in vestibular hair and support cells, and vestibular organ gene expression, to better understand mechanisms of age-related vestibular deficits. METHODS: Vestibular hair and supporting cell layers were microdissected from young and old rats, and mtDNA was quantified by qPCR. Additionally, vestibular organ gene expression was analysed by microarray and gene set enrichment analyses. RESULTS: In contrast to most other studies, we found no evidence of age-related mtDNA deletion mutations. However, we found an increase in abundance of major arc genes near the mtDNA control region. There was also a marked age-related reduction in mtDNA copy number in both cell types. Vestibular organ gene expression, gene set enrichment analysis showed the OXPHOS pathway was down regulated in old animals. CONCLUSION: Given the importance of mtDNA to mitochondrial OXPHOS and hair cell function, our findings suggest the vestibular organs are potentially on the brink of an energy crisis in old animals.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , DNA Mitocondrial/genética , Metabolismo Energético/genética , Células Ciliadas Vestibulares/metabolismo , Mitocôndrias/genética , Fatores Etários , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Variações do Número de Cópias de DNA , DNA Mitocondrial/metabolismo , Dosagem de Genes , Perfilação da Expressão Gênica/métodos , Células Ciliadas Vestibulares/patologia , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação Oxidativa , Ratos Endogâmicos F344 , Transcriptoma
12.
Front Pharmacol ; 9: 80, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467660

RESUMO

There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.

13.
J Trauma Acute Care Surg ; 85(2): 354-358, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080781

RESUMO

BACKGROUND: Cell-free mitochondrial DNA (mtDNA) is proinflammatory and has been detected in high concentrations in trauma patients' plasma. Deoxyribonuclease (DNAse) is the free plasma enzyme responsible for the digestion of extracellular DNA. The relationship between mtDNA and DNAse after major trauma is unknown. We hypothesized that DNAse activity would be elevated after injury and trauma surgery and would be associated with high concentrations of extracellular DNA. METHODS: Two-year prospective study was performed on 103 consecutive trauma patients (male, 81%; age, 38 years [interquartile range, 30-59 years]; injury severity score, 18 [interquartile range, 12-26 years]) who underwent standardized major orthopedic trauma surgical interventions. Blood was collected at five perioperative time points (preoperative, postoperative, 7 hours, 24 hours, and 3 days postoperatively). Healthy control subjects (n = 20) were also sampled. Cell-free mtDNA and nuclear DNA (nDNA) were measured using quantitative polymerase chain reaction. Deoxyribonuclease was also assayed in the same plasma samples. RESULTS: Increased levels of mtDNA (from preoperative 163 ± 86 ng/mL to 3 days 282 ± 201 ng/mL, p < 0.0001) and nDNA (from preoperative 28 ± 20 ng/mL to 3 days 37 ± 27 ng/mL, p < 0.05) were present in trauma patients at all perioperative time points compared with healthy controls (mtDNA: 4 ± 2 ng/mL; nDNA: 10 ± 5 ng/mL). Deoxyribonuclease activity was lower in the trauma cohort (from preoperative 0.06 ± 0.04U/mL to 3 days 0.08 ± 0.04U/mL, p < 0.0001) compared with healthy controls (DNAse: 0.17 ± 0.03U/mL). There was no correlation between DNAse and perioperative DNA concentrations. Elevated mtDNA (but not nDNA) correlated with the development of systemic inflammatory response syndrome (SIRS) (p = 0.026) but not multiple organ failure. CONCLUSIONS: The significant perioperative elevation in plasma-free mtDNA concentration is associated with the development of SIRS. The fact that increased cell-free DNA concentrations present with significantly lower than healthy control DNAse activity suggests a potential therapeutic opportunity with DNAse administration to modulate postinjury severe SIRS. LEVEL OF EVIDENCE: Prognostic/Epidemiological, level II.


Assuntos
DNA Mitocondrial/sangue , Desoxirribonucleases/sangue , Síndrome de Resposta Inflamatória Sistêmica/sangue , Adulto , Estudos de Casos e Controles , Ácidos Nucleicos Livres/sangue , Feminino , Humanos , Escala de Gravidade do Ferimento , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/sangue , Estudos Prospectivos
14.
Front Pharmacol ; 9: 802, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154715

RESUMO

Nanomedicines are typically submicrometer-sized carrier materials (nanoparticles) encapsulating therapeutic and/or imaging compounds that are used for the prevention, diagnosis and treatment of diseases. They are increasingly being used to overcome biological barriers in the body to improve the way we deliver compounds to specific tissues and organs. Nanomedicine technology aims to improve the balance between the efficacy and the toxicity of therapeutic compounds. Nanoparticles, one of the key technologies of nanomedicine, can exhibit a combination of physical, chemical and biological characteristics that determine their in vivo behavior. A key component in the translational assessment of nanomedicines is determining the biodistribution of the nanoparticles following in vivo administration in animals and humans. There are a range of techniques available for evaluating nanoparticle biodistribution, including histology, electron microscopy, liquid scintillation counting (LSC), indirectly measuring drug concentrations, in vivo optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear medicine imaging. Each technique has its own advantages and limitations, as well as capabilities for assessing real-time, whole-organ and cellular accumulation. This review will address the principles and methodology of each technique and their advantages and limitations for evaluating in vivo biodistribution of nanoparticles.

15.
Psychiatry Res ; 266: 175-185, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29864618

RESUMO

Animal models of maternal immune activation study the effects of infection, an environmental risk factor for schizophrenia, on brain development. Microglia activation and cytokine upregulation may have key roles in schizophrenia neuropathology. We hypothesised that maternal immune activation induces changes in microglia and cytokines in the brains of the adult offspring. Maternal immune activation was induced by injecting polyriboinosinic:polyribocytidylic acid into pregnant rats on gestational day (GD) 10 or GD19, with brain tissue collected from the offspring at adulthood. We observed no change in Iba1, Gfap, IL1-ß and TNF-α mRNA levels in the cingulate cortex (CC) in adult offspring exposed to maternal immune activation. Prenatal exposure to immune activation had a significant main effect on microglial IBA1-positive immunoreactive material (IBA1+IRM) in the corpus callosum; post-hoc analyses identified a significant increase in GD19 offspring, but not GD10. No change in was observed in the CC. In contrast, maternal immune activation had a significant main effect on GFAP+IRM in the CC at GD19 (not GD10); post-hoc analyses only identified a strong trend towards increased GFAP+IRM in the GD19 offspring, with no white matter changes. This suggests late gestation maternal immune activation causes subtle alterations to microglia and astrocytes in the adult offspring.


Assuntos
Proteínas de Ligação ao Cálcio/imunologia , Corpo Caloso/imunologia , Imunidade Celular/imunologia , Proteínas dos Microfilamentos/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Fatores Etários , Animais , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Feminino , Imunidade Celular/efeitos dos fármacos , Masculino , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Poli I-C/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Wistar , Esquizofrenia/imunologia , Esquizofrenia/metabolismo
16.
Neurobiol Aging ; 51: 122-131, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28063365

RESUMO

Prevailing evidence indicates a relatively late life decline in human vestibulo-ocular reflex (VOR) function. Although mice are commonly used in mechanistic studies of vestibular function, it remains unclear whether aging produces a corresponding decline in VOR function in mice. We sought to determine how the baseline VOR and its short-term adaptation were affected by aging. We tested 8 young (3-month old) and 8 aged (30-month old-equivalent to a ∼80-year old human) C57BL/6 mice. We measured their VOR response to whole-body static tilts and during 0.1-10 Hz whole-body sinusoidal and transient rotations before and after VOR adaptation training. Our data revealed minimal differences in static counter-tilt response between young and aged mice, but a significant deficit in baseline VOR gain in aged mice during transient rotations. Moreover, aged mice had a significant decrease in short-term VOR adaptation, particularly for training that sought to decrease the VOR response.


Assuntos
Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Envelhecimento/patologia , Animais , Cerebelo/patologia , Movimentos Oculares/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Degeneração Neural
17.
Physiol Behav ; 174: 114-119, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28302571

RESUMO

Hypothermic responses accompany motion sickness in humans and can be elicited by provocative motion in rats. We aimed to determine the potential role in these responses of the efferent cholinergic vestibular innervation. To this end, we used knockout (KO) mice lacking α9 cholinoreceptor subunit predominantly expressed in the vestibular hair cells and CBA strain as a wild-type (WT) control. In WT mice, circular horizontal motion (1Hz, 4cm radius, 20min) caused rapid and dramatic falls in core body temperature and surface head temperature associated with a transient rise in the tail temperature; these responses were substantially attenuated in KO mice; changes were (WT vs. KO): for the core body temperature-5.2±0.3 vs. -2.9±0.3°C; for the head skin temperature-3.3±0.2 vs. -1.7±0.2°C; for the tail skin temperature+3.9±1.1 vs+1.1±1.2°C. There was a close correlation in the time course of cooling the body and the surface of the head. KO mice also required 25% more time to complete a balance test. We conclude: i) that the integrity of cholinergic efferent vestibular system is essential for the full expression of motion-induced hypothermia in mice, and that the role of this system is likely facilitatory; ii) that the system is involvement in control of balance, but the involvement is not major; iii) that in mice, motion-induced body cooling is mediated via increased heat flow through vasodilated tail vasculature and (likely) via reduced thermogenesis. Our results support the idea that hypothermia is a biological correlate of a nausea-like state in animals.


Assuntos
Hipotermia/etiologia , Hipotermia/genética , Enjoo devido ao Movimento/complicações , Movimento (Física) , Receptores Nicotínicos/metabolismo , Animais , Temperatura Corporal/genética , Modelos Animais de Doenças , Locomoção/fisiologia , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Desempenho Psicomotor , Receptores Nicotínicos/genética , Temperatura Cutânea/genética , Fatores de Tempo
18.
Neurobiol Aging ; 45: 123-135, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27459933

RESUMO

The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.


Assuntos
Envelhecimento/metabolismo , Colesterol/metabolismo , Expressão Gênica , Homeostase/fisiologia , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Medula Espinal/metabolismo , Envelhecimento/fisiologia , Animais , Colesterol/biossíntese , Regulação para Baixo , Inflamação/genética , Masculino , Ratos Endogâmicos F344 , Medula Espinal/fisiologia , Regulação para Cima
19.
Eur J Pharmacol ; 784: 147-54, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27181066

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) regulates synaptic protein synthesis and therefore synaptic function and plasticity. A role for mTORC1 has recently been demonstrated for addiction-related behaviors. For example, central or intra-accumbal injections of the mTORC1 inhibitor rapamycin attenuates several indices of cocaine-seeking including progressive ratio (PR) responding and reinstatement. These behavioral effects are associated with decreased mTORC1 activity and synaptic protein translation in the nucleus accumbens (NAC) and point to a possible therapeutic role for rapamycin in the treatment of addiction. Currently, it is unclear whether similar behavioral and biochemical effects can be achieved by administering rapamycin systemically, which represents a more clinically-appropriate route of administration. Here, we assessed the effects of repeated, systemic administration of rapamycin (10mg/kg, i.p.) on PR responding for cocaine. We also assessed whether systemic rapamycin was associated with changes in measures of mTORC1 activity and GluA1 expression in the ventral and dorsal striatum. We report that systemic rapamycin treatment reduced PR breakpoints to levels comparable to intra-NAC rapamycin. Systemic rapamycin treatment also reduced phosphorylated p70S6K and GluA1 AMPARs within the NAC but not dorsal striatum. Thus, systemic administration of rapamycin is as effective at reducing drug seeking behavior and measures of mTORC1 activity compared to direct accumbal application and may therefore represent a possible therapeutic option in the treatment of addiction. Possible caveats of this treatment approach are discussed.


Assuntos
Cocaína/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Motivação/efeitos dos fármacos , Receptores de AMPA/metabolismo , Sirolimo/farmacologia , Estriado Ventral/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Ratos , Ratos Sprague-Dawley , Autoadministração/psicologia , Serina-Treonina Quinases TOR/metabolismo , Estriado Ventral/metabolismo , Estriado Ventral/fisiologia
20.
Mech Ageing Dev ; 149: 41-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26065381

RESUMO

Ageing affects most, if not all, functional systems in the body. For example, the somatic motor nervous system, responsible for initiating and regulating motor output to skeletal musculature, is vulnerable to ageing. The nigrostriatal dopamine pathway is one component of this system, with deficits in dopamine signalling contributing to major motor dysfunction, as exemplified in Parkinson's disease (PD). However, while the dopamine deficit in PD is due to degeneration of substantia nigra (SN) dopamine (DA) neurons, it is unclear whether there is sufficient loss of SN DA neurons with ageing to explain observed motor impairments. Instead, evidence suggests that age-related loss of DA neuron function may be more important than frank cell loss. To further elucidate the mechanisms of functional decline, we have investigated age-related changes in gene expression specifically in laser microdissected SN DA neurons. There were significant age-related changes in the expression of genes associated with neurotrophic factor signalling and the regulation of tyrosine hydroxylase activity. Furthermore, reduced expression of the DA neuron-associated transcription factor, Nurr1, may contribute to these changes. Together, these results suggest that altered neurotrophic signalling and tyrosine hydroxylase activity may contribute to altered DA neuron signalling and motor nervous system regulation in ageing.


Assuntos
Envelhecimento , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Substância Negra/citologia , Animais , Sobrevivência Celular , Primers do DNA , Dopamina/metabolismo , GTP Cicloidrolase/metabolismo , Perfilação da Expressão Gênica , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Lasers , Masculino , Fenótipo , Ratos , Ratos Endogâmicos F344 , Receptor trkB/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA