RESUMO
Hybrid zones provide a rare opportunity to explore the processes involved in reproductive isolation and speciation. The southern hybrid zone between the southeastern Australian tree frogs Litoria ewingii and L. paraewingi has been comprehensively studied over the last 40 years, primarily using reproductive compatibility experiments and male advertisement calls. We used mitochondrial DNA (mtDNA) and eight nuclear microsatellite markers to characterize this hybrid zone along a historically studied transect and to test various dispersal-dependent and dispersal-independent hybrid zone models. The species are genetically distinct and the level of hybridization within the contact zone is low, with the majority of admixed individuals representing later-generation hybrids. Based on previous experimental genetic compatibility studies, we predicted that hybrids with L. paraewingi mtDNA would be more frequent than hybrids with L. ewingii mtDNA. Surprisingly, a greater proportion of the identified hybrids had L. ewingii mtDNA. Geographical cline analyses showed a sharp transition in allele frequencies across the transect, and both the mtDNA and microsatellite data showed concordant cline centres, but were best supported by a model that allowed width to vary. Overall, the L. ewingii-L. paraewingi hybrid zone is best characterized as a tension zone, due to the narrow cline width, concordant genetic clines and low levels of hybridization.
Assuntos
Anuros/genética , Quimera/genética , Hibridização Genética , Animais , Austrália , DNA Mitocondrial/genética , Feminino , Frequência do Gene , Loci Gênicos , Variação Genética , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular , Filogeografia , Reprodução/genéticaRESUMO
There are substantial differences among taxonomic groups in their capacity to reach remote oceanic islands via long-distance overwater dispersal from mainland regions. Due to their permeable skin and intolerance of saltwater, amphibians generally require human-assisted dispersal to reach oceanic islands. Several Litoria frog species have been introduced to remote islands throughout the Pacific Ocean region. Lord Howe Island (LHI) is an oceanic island that lies approximately 600 km east of the Australian mainland and has a diverse, endemic biota. The bleating tree frog (Litoria dentata) is native to mainland eastern Australia, but was accidentally introduced to LHI in the 1990s, yet its ecology and potential impact on LHI has remained unstudied. We used a mitochondrial phylogeographical approach to determine that L. dentata was introduced from the Ballina region in northeastern New South Wales. The founding population was likely accidentally introduced with cargo shipped from the mainland. We also completed the first detailed investigation of the distribution, ecology and habitat use of L. dentata on LHI. The species is widespread on LHI and is prevalent in human habitat, cattle pasture and undisturbed forest. We discuss the potential impact of introduced Litoria species on Pacific islands and outline what biosecurity protocols could be implemented to prevent the introduction of further amphibian species to the ecologically sensitive oceanic area.
Assuntos
Anuros , Atividades Humanas , Espécies Introduzidas , Ilhas , Animais , Anuros/classificação , Anuros/genética , DNA Mitocondrial/genética , Ecossistema , Geografia , Humanos , Dados de Sequência Molecular , Oceano Pacífico , Filogenia , FilogeografiaRESUMO
Spatio-temporal studies of hybrid zones provide an opportunity to test evolutionary hypotheses of hybrid zone maintenance and movement. We conducted a landscape genetics study on a classic hybrid zone of the south-eastern Australian frogs, Litoria ewingii and Litoria paraewingi. This hybrid zone has been comprehensively studied since the 1960s, providing the unique opportunity to directly assess changes in hybrid zone structure across time. We compared both mtDNA and male advertisement call data from two time periods (present and 1960s). Clinal analysis of the coincidence (same center) and concordance (same width) of these traits indicated that the center of the hybrid zone has shifted 1 km south over the last 40 years, although the width of the zone and the rate of introgression remained unchanged. The low frequency of hybrids, the strong concordance of clines within a time period, and the small but significant movement across the study period despite significant anthropogenic changes through the region, suggest the hybrid zone is a tension zone located within a low-density trough. Hybrid zone movement has not been considered common in the past but our findings highlight that it should be considered a crucial component to our understanding of evolution.
Assuntos
Anuros/genética , Especiação Genética , Animais , FilogeografiaRESUMO
Lineages that exhibit little morphological change over time provide a unique opportunity to explore whether nonadaptive or adaptive processes explain the conservation of morphology over evolutionary time scales. We provide the most comprehensive evaluation to date of the evolutionary processes leading to morphological similarity among species in a cryptic species complex, incorporating two agamid lizard species (Diporiphora magna and D. bilineata). Phylogenetic analysis of mitochondrial (ND2) and nuclear (RAG-1) gene regions revealed the existence of eight deeply divergent clades. Analysis of morphological data confirmed the presence of cryptic species among these clades. Alternative evolutionary hypotheses for the morphological similarity of species were tested using a combination of phylogenetic, morphological, and ecological data. Likelihood model testing of morphological data suggested a history of constrained phenotypic evolution where lineages have a tendency to return to their medial state, whereas ecological data showed support for both Brownian motion and constrained evolution. Thus, there was an overriding signature of constrained evolution influencing morphological divergence between clades. Our study illustrates the utility of using a combination of phylogenetic, morphological, and ecological data to investigate evolutionary mechanisms maintaining cryptic species.