Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(8): 5062-5069, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31242390

RESUMO

We use transient Rayleigh scattering to study the thermalization of hot photoexcited carriers in single GaAs0.7Sb0.3/InP nanowire heterostructures. By comparing the energy loss rate in single core-only GaAs0.7Sb0.3 nanowires which do not show substantial hot carrier effects with the core-shell nanowires, we show that the presence of an InP shell substantially suppresses the longitudinal optical phonon emission rate at low temperatures which then leads to strong hot carrier effects.

2.
Nano Lett ; 18(9): 5875-5884, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30106301

RESUMO

Bismuth selenide (Bi2Se3) is a prototypical 3D topological insulator whose Dirac surface states have been extensively studied theoretically and experimentally. Surprisingly little, however, is known about the energetics and dynamics of electrons and holes within the bulk band structure of the semiconductor. We use mid-infrared femtosecond transient reflectance measurements on a single nanoflake to study the ultrafast thermalization and recombination dynamics of photoexcited electrons and holes within the extended bulk band structure over a wide energy range (0.3 to 1.2 eV). Theoretical modeling of the reflectivity spectral line shapes at 10 K demonstrates that the electrons and holes are photoexcited within a dense and cold electron gas with a Fermi level positioned well above the bottom of the lowest conduction band. Direct optical transitions from the first and the second spin-orbit split valence bands to the Fermi level above the lowest conduction band minimum are identified. The photoexcited carriers thermalize rapidly to the lattice temperature within a couple of picoseconds due to optical phonon emission and scattering with the cold electron gas. The minority carrier holes recombine with the dense electron gas within 150 ps at 10 K and 50 ps at 300 K. Such knowledge of interaction of electrons and holes within the bulk band structure provides a foundation for understanding how such states interact dynamically with the topologically protected Dirac surface states.

3.
Nano Lett ; 16(2): 1392-7, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26784952

RESUMO

We use temperature-dependent photoluminescence (PL), photoluminescence imaging, and time-resolved photoluminescence measurements to gain insights into the localization of excitons in single 2 nm GaAs/AlGaAs quantum well tube nanowires. PL spectra reveal the coexistence of localized and delocalized states at low temperatures, with narrow quantum dot-like emission lines on the high energy side of a broad emission band, and delocalized states on the low energy side. We find that the high energy QD-like emissions are metastable, disappearing at higher temperatures with only delocalized states (quantum well tube ground states) surviving. By comparing temperature- and time-dependent PL, we develop a theoretical model which provides insights into the confinement potentials and relaxation dynamics which localize the excitons in these quantum well tube nanowires.

4.
Nano Lett ; 15(3): 1876-82, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25714336

RESUMO

We use low-temperature photoluminescence, photoluminescence excitation, and photoluminescence imaging spectroscopy to explore the optical and electronic properties of GaAs/AlGaAs quantum well tube (QWT) heterostructured nanowires (NWs). We find that GaAs QWTs with widths >5 nm have electronic states which are delocalized and continuous along the length of the NW. As the NW QWT width decreases from 5 to 1.5 nm, only a single electron state is bound to the well, and no optical excitations to a confined excited state are present. Simultaneously, narrow emission lines (fwhm < 600 µeV) appear which are localized to single spatial points along the length of the NW. We find that these quantum-dot-like states broaden at higher temperatures and quench at temperatures above 80 K. The lifetimes of these localized states are observed to vary from dot to dot from 160 to 400 ps. The presence of delocalized states and then localized states as the QWTs become more confined suggests both opportunities and challenges for possible incorporation into quantum-confined device structures.

5.
Nano Lett ; 15(12): 7847-52, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26562619

RESUMO

In this Letter, we explore the nature of exciton localization in single GaAs/AlGaAs nanowire quantum well tube (QWT) devices using photocurrent (PC) spectroscopy combined with simultaneous photoluminescence (PL) and photoluminescence excitation (PLE) measurements. Excitons confined to GaAs quantum well tubes of 8 and 4 nm widths embedded into an AlGaAs barrier are seen to ionize at high bias levels. Spectroscopic signatures of the ground and excited states confined to the QWT seen in PL, PLE, and PC data are consistent with simple numerical calculations. The demonstration of good electrical contact with the QWTs enables the study of Stark effect shifts in the sharp emission lines of excitons localized to quantum dot-like states within the QWT. Atomic resolution cross-sectional TEM measurements and an analysis of the quantum confined Stark effect of these dots provide insights into the nature of the exciton localization in these nanostructures.

6.
Nano Lett ; 15(1): 378-85, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25426796

RESUMO

The development of earth abundant materials for optoelectronics and photovoltaics promises improvements in sustainability and scalability. Recent studies have further demonstrated enhanced material efficiency through the superior light management of novel nanoscale geometries such as the nanowire. Here we show that an industry standard epitaxy technique can be used to fabricate high quality II-V nanowires (1D) and nanoplatelets (2D) of the earth abundant semiconductor Zn3As2. We go on to establish the optoelectronic potential of this material by demonstrating efficient photoemission and detection at 1.0 eV, an energy which is significant to the fields of both photovoltaics and optical telecommunications. Through dynamical spectroscopy this superior performance is found to arise from a low rate of surface recombination combined with a high rate of radiative recombination. These results introduce nanostructured Zn3As2 as a high quality optoelectronic material ready for device exploration.

7.
Nano Lett ; 14(12): 7153-60, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25382815

RESUMO

Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices.

8.
Nano Lett ; 13(3): 1016-22, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23421755

RESUMO

The electronic properties of thin, nanometer scale GaAs quantum well tubes embedded inside the AlGaAs shell of a GaAs core-multishell nanowire are investigated using optical spectroscopies. Using numerical simulations to model cylindrically and hexagonally symmetric systems, we correlate these electronic properties with structural characterization by aberration-corrected scanning transmission electron microscopy of nanowire cross sections. These tubular quantum wells exhibit extremely high quantum efficiency and intense emission for extremely low submicrowatt excitation powers in both photoluminescence and photoluminescence excitation measurements. Numerical calculations of the confined eigenstates suggest that the electrons and holes in their ground states are confined to extremely localized one-dimensional filaments at the corners of the hexagonal structure which extend along the length of the nanowire.

9.
Nano Lett ; 13(11): 5367-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24134708

RESUMO

We use polarized photoluminescence excitation spectroscopy to observe the energy and symmetry of the predicted second conduction band in 130 nm diameter wurtzite InP nanowires. We find direct spectroscopic signatures for optical transitions among the A, B, and C hole bands and both the first and the second conduction bands. We determine that the splitting between the first and second conduction bands is 228 ± 7 meV in excellent agreement with theory. From these energies we show that the spin-orbit energy changes substantially between zinc blende and wurtzite InP. We discuss the two quite different solutions within the quasi-cubic approximation and the implications for these measurements. Finally, the observation of well-defined optical transitions between the B- and C-hole bands and the second conduction band suggests that either the theoretical description of the second conduction band as possessing Γ8 symmetry is incomplete, or other interactions are enabling these forbidden transitions.


Assuntos
Índio/química , Nanofios/química , Órbita , Fosfinas/química , Zinco/química , Luz , Tamanho da Partícula , Análise Espectral , Propriedades de Superfície
10.
Nano Lett ; 12(10): 5389-95, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22974064

RESUMO

Using a new technique, transient Rayleigh scattering, we show that measurements from a single GaAs/AlGaAs core-shell semiconductor nanowire provide sensitive and detailed information on the time evolution of the density and temperature of the electrons and holes after photoexcitation by an intense laser pulse. Through band filling, band gap renormalization, and plasma screening, the presence of a dense and hot electron-hole plasma directly influences the real and imaginary parts of the complex index of refraction that in turn affects the spectral dependence of the Rayleigh scattering cross-section in well-defined ways. By measuring this spectral dependence as a function of time, we directly determine the thermodynamically independent density and temperature of the electrons and holes as a function of time after pulsed excitation as the carriers thermalize to the lattice temperature. We successfully model the results by including ambipolar transport, recombination, and cooling through optic and acoustic phonon emission that quantify the hole mobility at ∼68,000 cm(2)/V·s, linear decay constant at 380 ps, bimolecular recombination rate at 4.8 × 10(-9) cm(3)/s and the energy-loss rate of plasma due to optical and acoustic phonon emission.

11.
Nano Lett ; 11(10): 4329-36, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21894948

RESUMO

The internal electronic structures of single semiconductor nanowires can be resolved using photomodulated Rayleigh scattering spectroscopy. The Rayleigh scattering from semiconductor nanowires is strongly polarization sensitive which allows a nearly background-free method for detecting only the light that is scattered from a single nanowire. While the Rayleigh scattering efficiency from a semiconductor nanowire depends on the dielectric contrast, it is relatively featureless as a function of energy. However, if the nanowire is photomodulated using a second pump laser beam, the internal electronic structure can be resolved with extremely high signal-to-noise and spectral resolution. The photomodulated Rayleigh scattering spectra can be understood theoretically as a first derivative of the scattering efficiency that results from a modulation of the band gap and depends sensitively on the nanowire diameter. Fits to spectral lineshapes provide both the band structure and the diameter of individual GaAs and InP nanowires under investigation.

12.
Nano Lett ; 10(3): 880-6, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20131863

RESUMO

Highly strained GaAs/GaP nanowires of excellent optical quality were grown with 50 nm diameter GaAs cores and 25 nm GaP shells. Photoluminescence from these nanowires is observed at energies dramatically shifted from the unstrained GaAs free exciton emission energy by 260 meV. Using Raman scattering, we show that it is possible to separately measure the degree of compressive and shear strain of the GaAs core and show that the Raman response of the GaP shell is consistent with tensile strain. The Raman and photoluminescence measurement are both on good agreement with 8 band k.p calculations. This result opens up new possibilities for engineering the electronic properties of the nanowires for optimal design of one-dimensional nanodevices by controlling the strain of the core and shell by varying the nanowire geometry.


Assuntos
Arsenicais/química , Gálio/química , Teste de Materiais/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Fosfinas/química , Análise Espectral Raman/métodos , Módulo de Elasticidade , Elétrons , Conformação Molecular , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Estresse Mecânico , Resistência à Tração
13.
Sci Rep ; 11(1): 8155, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854110

RESUMO

There is tremendous interest in measuring the strong electron-phonon interactions seen in topological Weyl semimetals. The semimetal NbIrTe4 has been proposed to be a Type-II Weyl semimetal with 8 pairs of opposite Chirality Weyl nodes which are very close to the Fermi energy. We show using polarized angular-resolved micro-Raman scattering at two excitation energies that we can extract the phonon mode dependence of the Raman tensor elements from the shape of the scattering efficiency versus angle. This van der Waals semimetal with broken inversion symmetry and 24 atoms per unit cell has 69 possible phonon modes of which we measure 19 modes with frequencies and symmetries consistent with Density Functional Theory calculations. We show that these tensor elements vary substantially in a small energy range which reflects a strong variation of the electron-phonon coupling for these modes.

14.
Nat Commun ; 11(1): 3991, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778660

RESUMO

Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-split H4 and H5 and the degenerate H6 valence bands (VB) and the lowest degenerate H6 conduction band (CB) as well as a higher energy transition at the L-point. Surprisingly, the degeneracy of the H6 CB (a proposed Weyl node) is lifted and the spin-split VB gap is reduced upon photoexcitation before relaxing to equilibrium as the carriers decay. Using ab initio density functional theory (DFT) calculations, we conclude that the dynamic band structure is caused by a photoinduced shear strain in the Te film that breaks the screw symmetry of the crystal. The band-edge anisotropy is also reflected in the hot carrier decay rate, which is a factor of two slower along the c-axis than perpendicular to it. The majority of photoexcited carriers near the band-edge are seen to recombine within 30 ps while higher lying transitions observed near 1.2 eV appear to have substantially longer lifetimes, potentially due to contributions of intervalley processes in the recombination rate. These new findings shed light on the strong correlation between photoinduced carriers and electronic structure in anisotropic crystals, which opens a potential pathway for designing novel Te-based devices that take advantage of the topological structures as well as strong spin-related properties.

15.
Hum Mov Sci ; 27(5): 668-81, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18242747

RESUMO

The aim of this study was to determine whether information obtained from measures of motor performance taken from birth to 4 years of age predicted motor and cognitive performance of children once they reached school age. Participants included 33 children aged from 6 years to 11 years and 6 months who had been assessed at ages 4 months to 4 years using the ages and stages questionnaires (ASQ: [Squires, J. K., Potter, L., & Bricker, D. (1995). The ages and stages questionnaire users guide. Baltimore: Brookes]). These scores were used to obtain trajectory information consisting of the age of asymptote, maximum or minimum score, and the variance of ASQ scores. At school age, both motor and cognitive ability were assessed using the McCarron Assessment of Neuromuscular Development (MAND: [McCarron, L. (1997). McCarron assessment of neuromuscular development: Fine and gross motor abilities (revised ed.). Dallas, TX: Common Market Press.]), and the Wechsler Intelligence Scale for Children-Version IV (WISC-IV: [Wechsler, D. (2004). WISC-IV integrated technical and interpretive manual. San Antonio, Texas: Harcourt Assessment]). In contrast to previous research, results demonstrated that, although socio-economic status (SES) predicted fine motor performance and three of four cognitive domains at school age, gestational age was not a significant predictor of later development. This may have been due to the low-risk nature of the sample. After controlling for SES, fine motor trajectory information did not account for a significant proportion of the variance in school aged fine motor performance or cognitive performance. The ASQ gross motor trajectory set of predictors accounted for a significant proportion of the variance for cognitive performance once SES was controlled for. Further analysis showed a significant predictive relationship for gross motor trajectory information and the subtests of working memory and processing speed. These results provide evidence for detecting children at risk of developmental delays or disorders with a parent report questionnaire prior to school age. The findings also add to recent investigations into the relationship between early motor development and later cognitive function, and support the need for ongoing research into a potential etiological relationship.


Assuntos
Cognição , Destreza Motora , Desempenho Psicomotor , Peso ao Nascer , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Doenças do Prematuro/diagnóstico , Estudos Longitudinais , Memória de Curto Prazo , Transtornos Psicomotores/diagnóstico , Tempo de Reação , Fatores de Risco , Fatores Socioeconômicos , Escalas de Wechsler
16.
Aust Crit Care ; 20(4): 137-45, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17931879

RESUMO

INTRODUCTION: The importance of early defibrillation in improving outcomes and reducing morbidity following out-of-hospital cardiac arrest underscores the importance of examining novel approaches to treatment access. The increasing evidence to support the importance of early defibrillation has increased attention on the potential for lay responders to deliver this therapy. AIM: This paper seeks to critically review the literature that evaluates the impact of lay responder defibrillator programs on survival to hospital discharge following an out-of-hospital cardiac arrest in the adult population. METHOD: The electronic databases, Medline and CINAHL, were searched using keywords including; "first responder", "lay responder", "defibrillation" and "cardiac arrest". The reference lists of retrieved articles and the Internet were also searched. Articles were included in the review if they reported primary data, in the English language, which described the effect of a lay responder defibrillation program on survival to hospital discharge from out-of-hospital cardiac arrest in adults. RESULTS: Eleven studies met the inclusion criteria. The small number of published studies, heterogeneity of study populations and study outcome methods prohibited formal meta-analysis. Therefore, narrative analysis was undertaken. Studies included in this report provided inconsistent findings in relation to survival to hospital discharge following out-of-hospital cardiac arrest. CONCLUSION: Although there are limited data, the role of the lay responder appears promising in improving the outcome from out-of-hospital cardiac arrest following early defibrillation. Despite the inherent methodological difficulties in studying this population, future research should address outcomes related to morbidity, mortality and cost-effectiveness.


Assuntos
Cardioversão Elétrica , Tratamento de Emergência , Parada Cardíaca/mortalidade , Parada Cardíaca/terapia , Desfibriladores , Cardioversão Elétrica/métodos , Acessibilidade aos Serviços de Saúde , Humanos , Alta do Paciente , Voluntários
17.
Nat Commun ; 7: 11927, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27311597

RESUMO

Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications.

18.
ACS Nano ; 9(2): 1336-40, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25565000

RESUMO

Unlike nanowires, GaAs nanosheets exhibit no twin defects, stacking faults, or dislocations even when grown on lattice mismatched substrates. As such, they are excellent candidates for optoelectronic applications, including LEDs and solar cells. We report substantial enhancements in the photoluminescence efficiency and the lifetime of passivated GaAs nanosheets produced using the selected area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). Measurements are performed on individual GaAs nanosheets with and without an AlGaAs passivation layer. Both steady-state photoluminescence and time-resolved photoluminescence spectroscopy are performed to study the optoelectronic performance of these nanostructures. Our results show that AlGaAs passivation of GaAs nanosheets leads to a 30- to 40-fold enhancement in the photoluminescence intensity. The photoluminescence lifetime increases from less than 30 to 300 ps with passivation, indicating an order of magnitude improvement in the minority carrier lifetime. We attribute these enhancements to the reduction of nonradiative recombination due to the compensation of surface states after passivation. The surface recombination velocity decreases from an initial value of 2.5 × 10(5) to 2.7 × 10(4) cm/s with passivation.

19.
Arch Clin Neuropsychol ; 19(8): 1063-76, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15533697

RESUMO

Given the high level of comorbidity of attention deficit hyperactivity disorder (ADHD) and developmental coordination disorder (DCD), deficits in executive function (EF), shown to be present in children with ADHD, may also be implicated in the motor coordination deficits of children with DCD. The aim of this study was to explore the relationship between EF and motor ability. A sample of 238 children, 121 girls and 117 boys, aged between 6 and 15 years was recruited for this project. Motor ability was assessed using the McCarron Assessment of Neuromuscular Development (MAND), level of inattention using the Child Behavior Checklist (CBCL), and Verbal IQ (VIQ) was estimated using subtests of the WISC-III. A reaction time task and three EF tasks measuring response inhibition, working memory and the ability to plan and respond to goal-directed tasks were administered. It was found that motor ability significantly accounted for variance in tasks measuring speed of performance, whereas inattention appeared to influence performance variability. Despite past evidence linking poor motor ability with inattention, there was little overlap in the processes that are affected in children with motor coordination or attention problems.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtornos das Habilidades Motoras/diagnóstico , Transtornos das Habilidades Motoras/epidemiologia , Adolescente , Criança , Comportamento de Escolha , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Prevalência , Tempo de Reação , Instituições Acadêmicas , Índice de Gravidade de Doença , Estudantes
20.
Hum Mov Sci ; 29(5): 777-86, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20650535

RESUMO

Research has identified a relationship between social-emotional problems and motor impairment in both pre-school and school-age children. The aim of the current study was to determine how motor performance in infancy and early childhood is related to levels of anxious and depressive symptomatology at age 6-12 years. Fifty participants were assessed by their parents 11 times between the ages of 4 months and 4 years using the Ages and Stages Questionnaire (ASQ), and once between the age of 6 and 12 years using the Child Behavior Checklist (CBCL). The ASQ scores were used to obtain the stability (variance) of fine and gross motor performance. Once gestational age, sex and age of testing were taken into account, the stability of gross motor scores predicted both the anxiety/depression measure and the anxious score from the CBCL. It appears that how variable a young child's gross motor development is from 4 months to 4 years predicts the level of anxious/depressive symptoms at school age. These findings may assist in the early identification of children at risk of anxiety disorders and depression at school age.


Assuntos
Ansiedade/epidemiologia , Transtorno Depressivo/epidemiologia , Destreza Motora/fisiologia , Adolescente , Envelhecimento/fisiologia , Envelhecimento/psicologia , Ansiedade/etiologia , Peso ao Nascer , Criança , Pré-Escolar , Transtorno Depressivo/etiologia , Emoções , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Valor Preditivo dos Testes , Comportamento Social , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA