Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Cell Mol Med ; 18(7): 1372-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24979331

RESUMO

Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells.


Assuntos
Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Papillomaviridae/imunologia , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/uso terapêutico , Linfócitos T Citotóxicos/imunologia , Neoplasias do Colo do Útero/imunologia , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Humanos , Imunidade Inata/imunologia , Imunofenotipagem , Interleucina-15/imunologia , Interleucina-15/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/prevenção & controle , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/prevenção & controle
2.
Oncologist ; 17(10): 1256-70, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22907975

RESUMO

The cytotoxic and regulatory antitumor functions of natural killer (NK) cells have become attractive targets for immunotherapy. Manipulation of specific NK cell functions and their reciprocal interactions with dendritic cells (DCs) might hold therapeutic promise. In this review, we focus on the engagement of NK cells in DC-based cancer vaccination strategies, providing a comprehensive overview of current in vivo experimental and clinical DC vaccination studies encompassing the monitoring of NK cells. From these studies, it is clear that NK cells play a key regulatory role in the generation of DC-induced antitumor immunity, favoring the concept that targeting both innate and adaptive immune mechanisms may synergistically promote clinical outcome. However, to date, DC vaccination trials are only infrequently accompanied by NK cell monitoring. Here, we discuss different strategies to improve DC vaccine preparations via exploitation of NK cells and provide a summary of relevant NK cell parameters for immune monitoring. We underscore that the design of DC-based cancer vaccines should include the evaluation of their NK cell stimulating potency both in the preclinical phase and in clinical trials.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Animais , Citotoxicidade Imunológica , Humanos
3.
J Exp Clin Cancer Res ; 40(1): 213, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172082

RESUMO

Immunotherapy is currently under intensive investigation as a potential breakthrough treatment option for glioblastoma. Given the anatomical and immunological complexities surrounding glioblastoma, lymphocytes that infiltrate the brain to develop durable immunity with memory will be key. Polyinosinic:polycytidylic acid, or poly(I:C), and its derivative poly-ICLC could serve as a priming or boosting therapy to unleash lymphocytes and other factors in the (immuno)therapeutic armory against glioblastoma. Here, we present a systematic review on the effects and efficacy of poly(I:C)/poly-ICLC for glioblastoma treatment, ranging from preclinical work on cellular and murine glioblastoma models to reported and ongoing clinical studies. MEDLINE was searched until 15 May 2021 to identify preclinical (glioblastoma cells, murine models) and clinical studies that investigated poly(I:C) or poly-ICLC in glioblastoma. A systematic review approach was conducted according to PRISMA guidelines. ClinicalTrials.gov was queried for ongoing clinical studies. Direct pro-tumorigenic effects of poly(I:C) on glioblastoma cells have not been described. On the contrary, poly(I:C) changes the immunological profile of glioblastoma cells and can also kill them directly. In murine glioblastoma models, poly(I:C) has shown therapeutic relevance as an adjuvant therapy to several treatment modalities, including vaccination and immune checkpoint blockade. Clinically, mostly as an adjuvant to dendritic cell or peptide vaccines, poly-ICLC has been demonstrated to be safe and capable of eliciting immunological activity to boost therapeutic responses. Poly-ICLC could be a valuable tool to enhance immunotherapeutic approaches for glioblastoma. We conclude by proposing several promising combination strategies that might advance glioblastoma immunotherapy and discuss key pre-clinical aspects to improve clinical translation.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Carboximetilcelulose Sódica/análogos & derivados , Glioblastoma/tratamento farmacológico , Poli I-C/uso terapêutico , Polilisina/análogos & derivados , Animais , Neoplasias Encefálicas/imunologia , Vacinas Anticâncer/uso terapêutico , Carboximetilcelulose Sódica/uso terapêutico , Ensaios Clínicos como Assunto , Glioblastoma/imunologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Camundongos , Polilisina/uso terapêutico
4.
Cancer Immunol Immunother ; 59(1): 35-46, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19449004

RESUMO

Immunotherapy for leukemia is a promising targeted strategy to eradicate residual leukemic cells after standard therapy, in order to prevent relapse and to prolong the survival of leukemia patients. However, effective anti-leukemia immune responses are hampered by the weak immunogenicity of leukemic cells. Therefore, much effort is made to identify agents that could increase the immunogenicity of leukemic cells and activate the immune system. Synthetic agonists of Toll-like receptor (TLR)7 and TLR8 are already in use as anticancer treatment, because of their ability to activate several immune pathways simultaneously, resulting in effective antitumor immunity. However, for leukemic cells little is known about the expression of TLR7/8 and the direct effects of their agonists. We hypothesized that TLR7/8 agonist treatment of human acute myeloid leukemia (AML) cells would lead to an increased immunogenicity of AML cells. We observed expression of TLR7 and TLR8 in primary human AML cells and AML cell lines. Passive pulsing of primary AML cells with the TLR7/8 agonist R-848 resulted in increased expression of MHC molecules, production of proinflammatory cytokines, and enhanced allogeneic naïve T cell-stimulatory capacity. These effects were absent or suboptimal if R-848 was administered intracellularly by electroporation. Furthermore, when AML cells were cocultured with allogeneic PBMC in the presence of R-848, interferon (IFN)-gamma was produced by allogeneic NK and NKT cells and AML cells were killed. In conclusion, the immunostimulatory effect of the TLR7/8 agonist R-848 on human AML cells could prove useful for the design of TLR-based immunotherapy for leukemia.


Assuntos
Adjuvantes Imunológicos/farmacologia , Imidazóis/farmacologia , Leucemia Mieloide Aguda/imunologia , Células T Matadoras Naturais/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Adulto , Idoso , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/biossíntese , Citocinas/imunologia , Feminino , Antígenos de Histocompatibilidade/biossíntese , Antígenos de Histocompatibilidade/imunologia , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Receptor 7 Toll-Like/biossíntese , Receptor 8 Toll-Like/biossíntese , Células Tumorais Cultivadas , Adulto Jovem
5.
Oncologist ; 14(3): 240-52, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19289488

RESUMO

Following standard therapy that consists of chemotherapy with or without stem cell transplantation, both relapsed and refractory disease shorten the survival of acute myeloid leukemia (AML) patients. Therefore, additional treatment options are urgently needed, especially to fight residual AML cells. The identification of leukemia-associated antigens and the observation that administration of allogeneic T cells can mediate a graft-versus-leukemia effect paved the way to the development of active and passive immunotherapy strategies, respectively. The aim of these strategies is the eradication of AML cells by the immune system. In this review, an overview is provided of both active and passive immunotherapy strategies that are under investigation or in use for the treatment of AML. For each strategy, a critical view on the state of the art is given and future perspectives are discussed.


Assuntos
Imunoterapia/métodos , Leucemia Mieloide/terapia , Doença Aguda , Humanos , Leucemia Mieloide/imunologia
6.
J Transl Med ; 7: 109, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20021667

RESUMO

BACKGROUND: Optimization of the current dendritic cell (DC) culture protocol in order to promote the therapeutic efficacy of DC-based immunotherapy is warranted. Alternative differentiation of monocyte-derived DCs using granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-15 has been propagated as an attractive strategy in that regard. The applicability of these so-called IL-15 DCs has not yet been firmly established. We therefore developed a novel pre-clinical approach for the generation of IL-15 DCs with potent immunostimulatory properties. METHODS: Human CD14+ monocytes were differentiated with GM-CSF and IL-15 into immature DCs. Monocyte-derived DCs, conventionally differentiated in the presence of GM-CSF and IL-4, served as control. Subsequent maturation of IL-15 DCs was induced using two clinical grade maturation protocols: (i) a classic combination of pro-inflammatory cytokines (tumor necrosis factor-alpha, IL-1beta, IL-6, prostaglandin E2) and (ii) a Toll-like receptor (TLR)7/8 agonist-based cocktail (R-848, interferon-gamma, TNF-alpha and prostaglandin E2). In addition, both short-term (2-3 days) and long-term (6-7 days) DC culture protocols were compared. The different DC populations were characterized with respect to their phenotypic profile, migratory properties, cytokine production and T cell stimulation capacity. RESULTS: The use of a TLR7/8 agonist-based cocktail resulted in a more optimal maturation of IL-15 DCs, as reflected by the higher phenotypic expression of CD83 and costimulatory molecules (CD70, CD80, CD86). The functional superiority of TLR7/8-activated IL-15 DCs over conventionally matured IL-15 DCs was evidenced by their (i) higher migratory potential, (ii) advantageous cytokine secretion profile (interferon-gamma, IL-12p70) and (iii) superior capacity to stimulate autologous, antigen-specific T cell responses after passive peptide pulsing. Aside from a less pronounced production of bioactive IL-12p70, short-term versus long-term culture of TLR7/8-activated IL-15 DCs resulted in a migratory profile and T cell stimulation capacity that was in favour of short-term DC culture. In addition, we demonstrate that mRNA electroporation serves as an efficient antigen loading strategy of IL-15 DCs. CONCLUSIONS: Here we show that short-term cultured and TLR7/8-activated IL-15 DCs fulfill all pre-clinical prerequisites of immunostimulatory DCs. The results of the present study might pave the way for the implementation of IL-15 DCs in immunotherapy protocols.


Assuntos
Adjuvantes Imunológicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/imunologia , Interleucina-15/farmacologia , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Eletroporação , Epitopos , Humanos , Interleucina-12/metabolismo , Fagocitose/efeitos dos fármacos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Imunológicos/metabolismo , Fatores de Tempo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Transfecção
7.
Oncologist ; 13(8): 859-75, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18701762

RESUMO

The importance of Toll-like receptors (TLRs) in stimulating innate and adaptive immunity is now well established. In view of this, TLR ligands have become interesting targets to use as stand-alone immunotherapeutics or vaccine adjuvants for cancer treatment. TLR7 and TLR8 were found to be closely related, sharing their intracellular endosomal location, as well as their ligands. In this review, we describe the agonists of TLR7 and TLR8 that are known so far, as well as their contribution to antitumor responses by affecting immune cells, tumor cells, and the tumor microenvironment. The major benefit of TLR7/8 agonists as immune response enhancers is their simultaneous stimulation of several cell types, resulting in a mix of activated immune cells, cytokines and chemokines at the tumor site. We discuss the studies that used TLR7/8 agonists as stand-alone immunotherapeutics or cancer vaccine adjuvants, as well as the potential of TLR7/8 ligands to enhance antitumor responses in passive immunotherapy approaches.


Assuntos
Vacinas Anticâncer/imunologia , Neoplasias/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Humanos , Imunoterapia/métodos , Ligantes , Neoplasias/prevenção & controle , Receptor 7 Toll-Like/uso terapêutico , Receptor 8 Toll-Like/uso terapêutico
8.
Front Immunol ; 9: 2503, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30464762

RESUMO

Genetic engineering of T cells with tumor specific T-cell receptors (TCR) is a promising strategy to redirect their specificity against cancer cells in adoptive T cell therapy protocols. Most studies are exploiting integrating retro- or lentiviral vectors to permanently introduce the therapeutic TCR, which can pose serious safety issues when treatment-related toxicities would occur. Therefore, we developed a versatile, non-genotoxic transfection method for human unstimulated CD8+ T cells. We describe an optimized double sequential electroporation platform whereby Dicer-substrate small interfering RNAs (DsiRNA) are first introduced to suppress endogenous TCR α and ß expression, followed by electroporation with DsiRNA-resistant tumor-specific TCR mRNA. We demonstrate that double sequential electroporation of human primary unstimulated T cells with DsiRNA and TCR mRNA leads to unprecedented levels of transgene TCR expression due to a strongly reduced degree of TCR mispairing. Importantly, superior transgenic TCR expression boosts epitope-specific CD8+ T cell activation and killing activity. Altogether, DsiRNA and TCR mRNA double sequential electroporation is a rapid, non-integrating and highly efficient approach with an enhanced biosafety profile to engineer T cells with antigen-specific TCRs for use in early phase clinical trials.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Engenharia Genética/métodos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , RNA/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/transplante , Citotoxicidade Imunológica , Eletroporação , Epitopos de Linfócito T/imunologia , Vetores Genéticos , Humanos , Neoplasias/imunologia , RNA Interferente Pequeno/genética , Ribonuclease III/metabolismo , Especificidade do Receptor de Antígeno de Linfócitos T
9.
Cancer Immunol Res ; 5(8): 710-715, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28637876

RESUMO

Although allogeneic stem cell transplantation (allo-SCT) can elicit graft-versus-tumor (GVT) immunity, patients often relapse due to residual tumor cells. As essential orchestrators of the immune system, vaccination with dendritic cells (DC) is an appealing strategy to boost the GVT response. Nevertheless, durable clinical responses after DC vaccination are still limited, stressing the need to improve current DC vaccines. Aiming to empower DC potency, we engineered monocyte-derived DCs to deprive them of ligands for the immune checkpoint regulated by programmed death 1 (PD-1). We also equipped them with interleukin (IL)-15 "transpresentation" skills. Transfection with short interfering (si)RNA targeting the PD-1 ligands PD-L1 and PD-L2, in combination with IL15 and IL15Rα mRNA, preserved their mature DC profile and rendered the DCs superior in inducing T-cell proliferation and IFNγ and TNFα production. Translated into an ex vivo hematological disease setting, DCs deprived of PD-1 ligands (PD-L), equipped with IL15/IL15Rα expression, or most effectively, both, induced superior expansion of minor histocompatibility antigen-specific CD8+ T cells from transplanted cancer patients. These data support the combinatorial approach of in situ suppression of the PD-L inhibitory checkpoints with DC-mediated IL15 transpresentation to promote antigen-specific T-cell responses and, ultimately, contribute to GVT immunity. Cancer Immunol Res; 5(8); 710-5. ©2017 AACR.


Assuntos
Vacinas Anticâncer/administração & dosagem , Células Dendríticas/transplante , Interleucina-15/genética , Receptor de Morte Celular Programada 1/genética , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Efeito Enxerto vs Tumor/efeitos dos fármacos , Efeito Enxerto vs Tumor/imunologia , Humanos , Interleucina-15/antagonistas & inibidores , Monócitos/imunologia , Monócitos/transplante , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , RNA Interferente Pequeno/genética , Transplante de Células-Tronco , Transfecção , Transplante Homólogo , Vacinação
10.
Methods Mol Biol ; 1393: 27-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27033213

RESUMO

First described in the 1970s, dendritic cells (DC) are currently subjects of intense investigation to exploit their unique antigen-presenting and immunoregulatory capacities. In cancer, DC show promise to elicit or amplify immune responses directed against cancer cells by activating natural killer (NK) cells and tumor antigen-specific T cells. Wilms' tumor 1 (WT1) protein is a tumor-associated antigen that is expressed in a majority of cancer types and has been designated as an antigen of major interest to be targeted in clinical cancer immunotherapy trials. In this chapter, we describe the generation, cryopreservation, and thawing of clinical grade autologous monocyte-derived DC vaccines that are loaded with WT1 by messenger RNA (mRNA) electroporation. This in-house-developed transfection method gives rise to presentation of multiple antigen epitopes and can be used for all patients without restriction of human leukocyte antigen (HLA) type.


Assuntos
Vacinas Anticâncer , Criopreservação , Células Dendríticas , RNA Mensageiro , Tumor de Wilms/terapia , Células Cultivadas , Eletroporação , Humanos , Vacinação , Proteínas WT1/genética
11.
Cytokine Growth Factor Rev ; 26(1): 15-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25306466

RESUMO

Interleukin (IL)-15 is one of the most promising molecules to be used in antitumor immune therapy, as it is able to stimulate the main killer cells of both the innate and adaptive immune system. Although this cytokine can be used as a stand-alone immunotherapeutic agent, IL-15 will probably be most efficient in combination with other strategies to overcome high tumor burden, immune suppression of the tumor microenvironment and/or the short half-life of IL-15. In this review, we will discuss the combination strategies with IL-15 that have been tested to date in different animal tumor models, which include chemotherapy, other immunostimulatory cytokines, targeted therapy, adoptive cell transfer and gene therapy. In addition, we give an overview of IL-15 combination therapies that are currently tested in clinical studies to treat patients with hematological or advanced solid tumors.


Assuntos
Citocinas/uso terapêutico , Neoplasias Hematológicas/terapia , Interleucina-15/uso terapêutico , Neoplasias/terapia , Transferência Adotiva , Animais , Terapia Combinada , Terapia Genética , Meia-Vida , Humanos , Imunoterapia
12.
Methods Mol Biol ; 1139: 233-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24619684

RESUMO

In this chapter, we describe the technique of electroporation as an efficient method to load primary leukemic cells with the double-stranded RNA (dsRNA) analogue, polyriboinosinic polyribocytidylic acid (poly(I:C)), and detail on the delicate freezing and thawing procedure of primary leukemic cells.Electroporation is a non-viral gene transfer method by which short-term pores in the membrane of cells are generated by an electrical pulse, allowing molecules to enter the cell. RNA electroporation, a technique developed in our laboratory, is a widely used and versatile transfection method for efficient introduction of both coding RNA (messenger RNA) and non-coding RNA, e.g., dsRNA and small interfering (siRNA), into mammalian cells. Accurate cell processing and storage of patient material is essential for optimal recovery and quality of the cell product for downstream applications.


Assuntos
Eletroporação/métodos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Poli I-C/metabolismo , Criopreservação , Humanos
13.
Oncoimmunology ; 2(4): e23619, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23734314

RESUMO

Our own experience and a thorough literature review suggest that interferon α (IFNα) should be reconsidered for the treatment of acute myeloid leukemia patients. Most likely, the success of such treatment depends on the achievement of high serum levels of IFNα for several months, which can be obtained by using pegylated IFNα.

14.
PLoS One ; 6(6): e20952, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21698118

RESUMO

α active specific immunotherapy aims at stimulating the host's immune system to recognize and eradicate malignant cells. The concomitant activation of dendritic cells (DC) and natural killer (NK) cells is an attractive modality for immune-based therapies. Inducing immunogenic cell death to facilitate tumor cell recognition and phagocytosis by neighbouring immune cells is of utmost importance for guiding the outcome of the immune response. We previously reported that acute myeloid leukemic (AML) cells in response to electroporation with the synthetic dsRNA analogue poly(I:C) exert improved immunogenicity, demonstrated by enhanced DC-activating and NK cell interferon-γ-inducing capacities. To further invigorate the potential of these immunogenic tumor cells, we explored their effect on the phagocytic and cytotoxic capacity of DC and NK cells, respectively. Using single-cell analysis, we assessed these functionalities in two- and three-party cocultures. Following poly(I:C) electroporation AML cells become highly susceptible to NK cell-mediated killing and phagocytosis by DC. Moreover, the enhanced killing and the improved uptake are strongly correlated. Interestingly, tumor cell killing, but not phagocytosis, is further enhanced in three-party cocultures provided that these tumor cells were upfront electroporated with poly(I:C). Altogether, poly(I:C)-electroporated AML cells potently activate DC and NK cell functions and stimulate NK-DC cross-talk in terms of tumor cell killing. These data strongly support the use of poly(I:C) as a cancer vaccine component, providing a way to overcome immune evasion by leukemic cells.


Assuntos
Leucemia Mieloide Aguda/patologia , Poli I-C/farmacologia , Células Dendríticas , Eletroporação , Corantes Fluorescentes , Humanos , Células Matadoras Naturais , Leucemia Mieloide Aguda/imunologia , Fagocitose
15.
J Immunol Methods ; 357(1-2): 51-4, 2010 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-20214906

RESUMO

Interferon (IFN)-gamma ELISPOT can be used to monitor the magnitude of virus-specific cellular immune responses in vaccine trials. Often, IFN-gamma ELISPOT is performed with cryopreserved peripheral blood mononuclear cells (PBMC). However, it has not been well defined yet to what extent diminished cell viability of PBMC following cryopreservation affects IFN-gamma responses in ELISPOT. Therefore, we assessed the influence of apoptotic cells on the number of spot-forming cells (SFC) in IFN-gamma ELISPOT using a gradient of UV-irradiated apoptotic PBMC and viral antigens derived from varicella zoster virus (VZV) and cytomegalovirus (CMV). No SFC were observed when UV-irradiated apoptotic cells were stimulated with VZV or CMV antigens. Moreover, presence of apoptotic cells among viable T cells hampered the detection of SFC following stimulation with VZV or CMV cell lysates, but not with CMVpp65 peptide pool. Statistical analysis showed that mainly late apoptotic cells, staining both Annexin V and 7-amino-actinomycin D (7-AAD), were associated with a decreased number of SFC. In conclusion, it is recommended to use highly viable thawed PBMC for the detection of virus-specific cellular immune responses by IFN-gamma ELISPOT, since the detection of CMV- and VZV-specific T cell responses stimulated by cell lysates was significantly impeded by the presence of apoptotic cells.


Assuntos
Antígenos Virais/imunologia , Apoptose/imunologia , Citomegalovirus/imunologia , Herpesvirus Humano 3/imunologia , Interferon gama/imunologia , Linfócitos T/imunologia , Adulto , Apoptose/efeitos da radiação , Criopreservação , Feminino , Humanos , Técnicas de Imunoadsorção , Interferon gama/biossíntese , Masculino , Linfócitos T/metabolismo , Raios Ultravioleta/efeitos adversos
16.
Leuk Res ; 33(4): 539-46, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18845337

RESUMO

Natural killer (NK) cells are key players of innate immunity. Besides their major cytotoxic function, NK cells can also produce inflammatory cytokines such as interferon (IFN)-gamma. In this way, NK cells can shape adaptive immune responses through activation of dendritic cells (DC), thereby promoting the bidirectional cross-talk between NK cells and DC. Including this helper function of NK cells in cancer vaccination might be important for the induction of effective T cell responses. Here, we explored the capacity of purified human NK cells to produce IFN-gamma upon two-signal stimulation using different types of acute myeloid leukemia (AML) cells and type I IFN. Based on our previous findings that AML cells produce IFN-alpha upon electroporation with the synthetic double-stranded (ds)RNA polyriboinosinic polyribocytidylic acid (poly(I:C)), we hypothesized that dsRNA-loaded tumor cells provide both signals to elicit an NK cell-driven IFN-gamma production. Our results show that in vitro, NK cells become strong IFN-gamma-secreting cells upon stimulation with specific AML cells and IFN-alpha, with a variable responsiveness against different AML cell lines. Importantly, loading of AML cells with poly(I:C) is an elegant method to provide NK cells with both signals, a feature that could have important clinical implications because it obviates the side effects of systemic cytokine administration. Moreover, in addition to our previous findings that DC become activated upon phagocytosis of poly(I:C)-electroporated AML cells, these data strongly encourage future research on the potential of dsRNA-transfected AML cells and their effect to favor NK-DC cross-talk for the design of leukemia vaccines.


Assuntos
Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , RNA de Cadeia Dupla/imunologia , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Eletroporação , Citometria de Fluxo , Humanos , Indutores de Interferon/imunologia , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/genética , Poli I-C/imunologia
17.
Hum Gene Ther ; 20(10): 1106-18, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19656053

RESUMO

In view of their potent antigen-presenting capacity and ability to induce effective immune responses, dendritic cells (DCs) have become an attractive target for therapeutic manipulation of the immune system. The application of tumor-associated antigen (TAA)-expressing DCs for cancer therapy has been the subject of intensive translational investigation. Previous clinical trials demonstrated tumor-specific immune responses without any significant toxicity. However, the clinical success has been modest, because only a limited number of immunized patients demonstrated cancer regression. Considerable progress has been made in the knowledge of DC biology, which opens new avenues for the development of optimized clinical protocols. One such promising approach that might carve its place in the future of DC-based therapy is the use of gene-modified DCs. DCs engineered to express TAAs allow multiepitope presentation by both major histocompatibility complex (MHC) class I and II molecules of full-length TAAs independent of the patient's HLA constitution, as opposed to peptide vaccination strategies. Besides transgene TAA expression, DCs can be genetically modified (1) to express a variety of immune-potentiating molecules (e.g., costimulatory molecules, cytokines, and chemokines) or (2) to downregulate negative modulators of DC functioning, all allowing an enhancement of their immunogenic potential. In the present review, gene delivery systems for DCs are discussed, as well as the various transgenes used for genetic modification of DCs. Moreover, a detailed review of the already published trials using gene-modified DCs is presented and future DC-based strategies targeting multiple layers of the complex cellular immune response are highlighted.


Assuntos
Células Dendríticas/imunologia , Terapia Genética , Neoplasias/genética , Neoplasias/terapia , Animais , Ensaios Clínicos como Assunto , Técnicas de Transferência de Genes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA