Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31455014

RESUMO

In light of the promising results of immune checkpoint blockade (ICPB) in malignant pleural mesothelioma (MPM), we investigated the effect of different chemotherapeutic agents on the expression of immune checkpoints (ICPs) in order to rationally design a good treatment schedule for their combination with ICP blocking antibodies. Cisplatin, oxaliplatin and pemetrexed are interesting chemotherapeutic agents to combine with immunotherapy given their immunomodulatory capacities. We looked into cisplatin and pemetrexed because their combination is used as first-line treatment of MPM. Additionally, the effect of the immunogenic chemotherapeutic agent, oxaliplatin, was also studied. Three different MPM cell lines were used for representation of both epithelioid and sarcomatoid subtypes. The desired inhibitory concentrations of the chemotherapeutic agents were determined with the SRB-assay. Allogeneic co-cultures of MPM cells with healthy donor peripheral blood mononuclear cells (PBMC) were set up to assess the effect of these chemotherapeutic agents on the expression of ICPs (PD-1, LAG-3, TIM-3) and their ligands (PD-L1, PD-L2, galectin-9). Cisplatin might be a promising treatment to combine with ICP blocking antibodies since our MPM cell lines were most susceptible to this stand-alone treatment. We found that the expression of ICPs and their ligands on both MPM cells and PBMC was mostly downregulated or unaltered when treated with chemotherapeutic agents, though no clear trend could be determined.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Mesotelioma/etiologia , Mesotelioma/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores Tumorais/antagonistas & inibidores , Linhagem Celular Tumoral , Terapia Combinada , Expressão Gênica , Humanos , Imunomodulação/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Mesotelioma/patologia , Mesotelioma/terapia , Mesotelioma Maligno , Terapia de Alvo Molecular , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
2.
Oncoimmunology ; 7(3): e1407899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29399410

RESUMO

Prognosis of glioblastoma remains dismal, underscoring the need for novel therapies. Immunotherapy is generating promising results, but requires combination strategies to unlock its full potential. We investigated the immunomodulatory capacities of poly(I:C) on primary human glioblastoma cells and its combinatorial potential with programmed death ligand (PD-L) blockade. In our experiments, poly(I:C) stimulated expression of both PD-L1 and PD-L2 on glioblastoma cells, and a pro-inflammatory secretome, including type I interferons (IFN) and chemokines CXCL9, CXCL10, CCL4 and CCL5. IFN-ß was partially responsible for the elevated PD-1 ligand expression on these cells. Moreover, real-time PCR and chloroquine-mediated blocking experiments indicated that poly(I:C) triggered Toll-like receptor 3 to elicit its effect. Cocultures of poly(I:C)-treated glioblastoma cells with peripheral blood mononuclear cells enhanced lymphocytic activation (CD69, IFN-γ) and cytotoxic capacity (CD107a, granzyme B). Additional PD-L1 blockade further propagated immune activation. Besides activating immunity, poly(I:C)-treated glioblastoma cells also doubled the attraction of CD8+ T cells, and to a lesser extent CD4+ T cells, via a mechanism which included CXCR3 and CCR5 ligands. Our results indicate that by triggering glioblastoma cells, poly(I:C) primes the tumor microenvironment for an immune response. Secreted cytokines allow for immune activation while chemokines attract CD8+ T cells to the front, which are postulated as a prerequisite for effective PD-1/PD-L1 blockade. Accordingly, additional blockade of the concurrently elevated tumoral PD-L1 further reinforces the immune activation. In conclusion, our data proposes poly(I:C) treatment combined with PD-L1 blockade to invigorate the immune checkpoint inhibition response in glioblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA