Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 477(7365): 443-7, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21938066

RESUMO

Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging. Inspirations from natural nonwetting structures, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air-liquid interface. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis, failure under pressure and upon physical damage, inability to self-heal and high production cost. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach-inspired by Nepenthes pitcher plants-is conceptually different from the lotus effect, because we use nano/microstructured substrates to lock in place the infused lubricating fluid. We define the requirements for which the lubricant forms a stable, defect-free and inert 'slippery' interface. This surface outperforms its natural counterparts and state-of-the-art synthetic liquid-repellent surfaces in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low contact angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1-1 s), resist ice adhesion, and function at high pressures (up to about 680 atm). We show that these properties are insensitive to the precise geometry of the underlying substrate, making our approach applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane). We envision that these slippery surfaces will be useful in fluid handling and transportation, optical sensing, medicine, and as self-cleaning and anti-fouling materials operating in extreme environments.


Assuntos
Materiais Biomiméticos/química , Lubrificantes/química , Magnoliopsida/química , Pressão , Propriedades de Superfície , Molhabilidade , Animais , Formigas/fisiologia , Sangue , Hidrocarbonetos/química , Gelo , Lotus/anatomia & histologia , Lotus/química , Lubrificantes/farmacologia , Lubrificação , Magnoliopsida/anatomia & histologia , Nanoestruturas , Petróleo , Porosidade , Propriedades de Superfície/efeitos dos fármacos , Água/química
2.
Opt Express ; 15(12): 7439-47, 2007 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19547067

RESUMO

We present a systematic study of optical antenna arrays, in which the effects of coupling between the antennas, as well as of the antenna length, on the reflection spectra are investigated and compared. Such arrays can be fabricated on the facet of a fiber, and we propose a photonic device, a plasmonic optical antenna fiber probe, that can potentially be used for in-situ chemical and biological detection and surface-enhanced Raman scattering.

3.
ACS Nano ; 3(1): 59-65, 2009 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19206249

RESUMO

Conventional lithographic methods (e.g., electron-beam lithography, photolithography) are capable of producing high-resolution structures over large areas but are generally limited to large (>1 cm(2)) planar substrates. Incorporation of these features on unconventional substrates (i.e., small (<1 mm(2)) and/or non-planar substrates) would open possibilities for many applications, including remote fiber-based sensing, nanoscale optical lithography, three-dimensional fabrication, and integration of compact optical elements on fiber and semiconductor lasers. Here we introduce a simple method in which a thin thiol-ene film strips arbitrary nanoscale metallic features from one substrate and is then transferred, along with the attached features, to a substrate that would be difficult or impossible to pattern with conventional lithographic techniques. An oxygen plasma removes the sacrificial film, leaving behind the metallic features. The transfer of dense and sparse patterns of isolated and connected gold features ranging from 30 nm to 1 mum, to both an optical fiber facet and a silica microsphere, demonstrates the versatility of the method. A distinguishing feature of this technique is the use of a thin, sacrificial film to strip and transfer metallic nanopatterns and its ability to directly transfer metallic structures produced by conventional lithography.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Elétrons , Ouro/química , Nanopartículas Metálicas/química , Metais/química , Microscopia Eletrônica de Varredura , Óptica e Fotônica , Oxigênio/química , Polímeros/química , Semicondutores , Compostos de Sulfidrila/química , Propriedades de Superfície
4.
Nano Lett ; 9(3): 1132-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19236032

RESUMO

This paper reports a bidirectional fiber optic probe for the detection of surface-enhanced Raman scattering (SERS). One facet of the probe features an array of gold optical antennas designed to enhance Raman signals, while the other facet of the fiber is used for the input and collection of light. Simultaneous detection of benzenethiol and 2-[(E)-2-pyridin-4-ylethenyl]pyridine is demonstrated through a 35 cm long fiber. The array of nanoscale optical antennas was first defined by electron-beam lithography on a silicon wafer. The array was subsequently stripped from the wafer and then transferred to the facet of a fiber. Lithographic definition of the antennas provides a method for producing two-dimensional arrays with well-defined geometry, which allows (i) the optical response of the probe to be tuned and (ii) the density of "hot spots" generating the enhanced Raman signal to be controlled. It is difficult to determine the Raman signal enhancement factor (EF) of most fiber optic Raman sensors featuring hot spots because the geometry of the Raman enhancing nanostructures is poorly defined. The ability to control the size and spacing of the antennas enables the EF of the transferred array to be estimated. EF values estimated after focusing a laser directly onto the transferred array ranged from 2.6 x 10(5) to 5.1 x 10(5).

5.
ACS Nano ; 2(4): 800-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19206613

RESUMO

This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The evaporating material enters the porous openings of the AAO membrane and deposits onto the walls of the pores. The membrane is tilted with respect to the column of evaporating material, so the shadows cast by the openings of the pores onto the inside walls of the pores define the geometry of the tubes. Rotation of the membrane during evaporation ensures uniform deposition inside the pores. After evaporation, dissolution of the AAO in base easily removes the template to yield an array of nanotubes connected by a thin backing of the same metal or metal oxide. The diameter of the pores dictates the diameter of the tubes, and the incident angle of evaporation determines the height of the tubes. Tubes up to approximately 1.5 mum in height and 20-200 nm in diameter were fabricated. This method is adaptable to any material that can be vapor-deposited, including indium-tin oxide (ITO), a conductive, transparent material that is useful for many opto-electronic applications. An array of gold nanotubes produced by this technique served as a substrate for surface-enhanced Raman spectroscopy: the Raman signal (per molecule) from a monolayer of benzenethiolate was a factor of approximately 5 x 10(5) greater than that obtained using bulk liquid benzenethiol.


Assuntos
Alumínio/química , Cristalização/métodos , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Nanotubos/química , Gases/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Óxidos/química , Tamanho da Partícula , Propriedades de Superfície
6.
Opt Lett ; 30(22): 3042-4, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16315715

RESUMO

Forces arising from overlap between the guided waves of parallel, microphotonic waveguides are calculated. Both attractive and repulsive forces, determined by the choice of relative input phase, are found. Using realistic parameters for a silicon-on-insulator material system, we estimate that the forces are large enough to cause observable displacements. Our results illustrate the potential for a broader class of optically tunable microphotonic devices and microstructured artificial materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA