Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Biol Evol ; 13(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893846

RESUMO

The repetitive part of the genome (the repeatome) contains a wealth of often overlooked information that can be used to resolve phylogenetic relationships and test evolutionary hypotheses for clades of related plant species such as Pelargonium. We have generated genome skimming data for 18 accessions of Pelargonium section Ciconium and one outgroup. We analyzed repeat abundancy and repeat similarity in order to construct repeat profiles and then used these for phylogenetic analyses. We found that phylogenetic trees based on read similarity were largely congruent with previous work based on morphological and chloroplast sequence data. For example, results agreed in identifying a "Core Ciconium" group which evolved after the split with P. elongatum. We found that this group was characterized by a unique set of repeats, which confirmed currently accepted phylogenetic hypotheses. We also found four species groups within P. sect. Ciconium that reinforce previous plastome-based reconstructions. A second repeat expansion was identified in a subclade which contained species that are considered to have dispersed from Southern Africa into Eastern Africa and the Arabian Peninsula. We speculate that the Core Ciconium repeat set correlates with a possible WGD event leading to this branch.


Assuntos
Pelargonium , África Oriental , Evolução Biológica , Cloroplastos/genética , Evolução Molecular , Genoma de Planta , Pelargonium/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico
2.
Front Plant Sci ; 11: 614871, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391328

RESUMO

The genetics underlying Cyto-Nuclear Incompatibility (CNI) was studied in Pelargonium interspecific hybrids. We created hybrids of 12 closely related crop wild relatives (CWR) with the ornamental P. × hortorum. Ten of the resulting 12 (F1) interspecific hybrids segregate for chlorosis suggesting biparental plastid inheritance. The segregation ratios of the interspecific F2 populations show nuclear interactions of one, two, or three nuclear genes regulating plastid function dependent on the parents. We further validated that biparental inheritance of plastids is common in section Ciconium, using diagnostic PCR primers. Our results pave the way for using the diverse species from section Ciconium, each with its own set of characteristics, as novel sources of desired breeding traits for P. × hortorum cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA