Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000102

RESUMO

Aberrant expression of the double homeobox 4 (DUX4) gene in skeletal muscle predominantly drives the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD). We recently demonstrated that berberine, an herbal extract known for its ability to stabilize guanine-quadruplex structures, effectively downregulates DUX4 expression in FSHD patient-derived myoblasts and in mice overexpressing exogenous DUX4 after viral vector-based treatment. Here, we sought to confirm berberine's inhibitory efficacy on DUX4 in the widely used FSHD-like transgenic mouse model, ACTA1-MCM/FLExDUX4, where DUX4 is induced at pathogenic levels using tamoxifen. Animals repeatedly treated with berberine via intraperitoneal injections for 4 weeks exhibited significant reductions in both mRNA and protein levels of DUX4, and in mRNA expression of murine DUX4-related genes. This inhibition translated into improved forelimb muscle strength and positive alterations in important FSHD-relevant cellular pathways, although its impact on muscle mass and histopathology was less pronounced. Collectively, our data confirm the efficacy of berberine in downregulating DUX4 expression in the most relevant FSHD mouse model. However, further optimization of dosing regimens and new studies to enhance the bioavailability of berberine in skeletal muscle are warranted to fully leverage its therapeutic potential for FSHD treatment.


Assuntos
Berberina , Modelos Animais de Doenças , Proteínas de Homeodomínio , Camundongos Transgênicos , Músculo Esquelético , Distrofia Muscular Facioescapuloumeral , Animais , Distrofia Muscular Facioescapuloumeral/tratamento farmacológico , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Berberina/farmacologia , Actinas/metabolismo , Actinas/genética , Humanos
2.
Lipids Health Dis ; 22(1): 133, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612700

RESUMO

BACKGROUND: Desaturase enzymes play a key role in several pathways including biosynthesis of poly- and mono- unsaturated fatty acids (PUFAs, MUFA). In preterm infants, desaturase enzyme activity (DA) may be a rate-limiting step in maintaining PUFAs levels during this critical developmental window and impact on long term metabolic health. The study tested the hypothesis that DA is altered in preterm infants compared to term infants in early life and may be a marker of risk or contribute to later alterations in metabolic health. METHODS: Lipidomic analyses were conducted using blood samples from two established UK-based cohorts, involving very preterm (n = 105) and term (n = 259) infants. Blood samples were taken from term infants at birth, two and six weeks and from preterm infants when established on enteral feeds and at term corrected age. DA of the 2 groups of infants were estimated indirectly from product/precursor lipids ratios of phosphatidylcholine (PC) and triglycerides (TG) species and reported according to their postmenstrual and postnatal ages. RESULTS: There were changes in lipid ratios representing desaturase enzyme activity in preterm infants in the first weeks of life with higher delta 6 desaturases (D6D) triglyceride (TG) indices but significantly lower delta 9 desaturase (D9D) and D6D(PC) indices. In comparison to term infants, preterm have lower delta 5 desaturase (D5D) but higher D6D indices at all postnatal ages. Although point levels of desaturase indices were different, trajectories of changes in these indices over time were similar in preterm and term infants. CONCLUSIONS: This study findings suggest the patterns of desaturase indices in preterm infants differ from that of term infants but their trajectories of change in the first 10 weeks of life were similar. These differences of DA if they persist in later life could contribute to the mechanism of diseases in preterm adulthood and warrant further investigations.


Assuntos
Recém-Nascido Prematuro , Fosfatidilcolinas , Humanos , Recém-Nascido , Lactente , Adulto , Lipidômica , Triglicerídeos , Ácidos Graxos Dessaturases/genética
3.
Metabolomics ; 18(2): 13, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35141784

RESUMO

BACKGROUND: The paternal diet affects lipid metabolism in offspring for at least two generations through nutritional programming. However, we do not know how this is propagated to the offspring. OBJECTIVES: We tested the hypothesis that the changes in lipid metabolism that are driven by paternal diet are propagated through spermatozoa and not seminal plasma. METHODS: We applied an updated, purpose-built computational network analysis tool to characterise control of lipid metabolism systemically (Lipid Traffic Analysis v2.3) on a known mouse model of paternal nutritional programming. RESULTS: The analysis showed that the two possible routes for programming effects, the sperm (genes) and seminal plasma (influence on the uterine environment), both have a distinct effect on the offspring's lipid metabolism. Further, the programming effects in offspring suggest that changes in lipid distribution are more important than alterations in lipid biosynthesis. CONCLUSIONS: These results show how the uterine environment and genes both affect lipid metabolism in offspring, enhancing our understanding of the link between parental diet and metabolism in offspring.


Assuntos
Metabolismo dos Lipídeos , Sêmen , Animais , Pai , Humanos , Masculino , Metabolômica , Camundongos , Espermatozoides/metabolismo
4.
J Pediatr Gastroenterol Nutr ; 74(6): 734-741, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35185113

RESUMO

OBJECTIVE: Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition in children characterised by insulin resistance and altered lipid metabolism. Affected patients are at increased risk of cardiovascular disease (CVD) and children with NAFLD are likely to be at risk of premature cardiac events. Evaluation of the plasma lipid profile of children with NAFLD offers the opportunity to investigate these perturbations and understand how closely they mimic the changes seen in adults with cardiometabolic disease. METHODS: We performed untargeted liquid chromatography-mass spectrometry (LC-MS) plasma lipidomics on 287 children: 19 lean controls, 146 from an obese cohort, and 122 NAFLD cases who had undergone liver biopsy. Associations between lipid species and liver histology were assessed using regression adjusted for age and sex. Results were then replicated using data from 9500 adults with metabolic phenotyping. RESULTS: More severe paediatric NAFLD was associated with lower levels of long chain, polyunsaturated phosphatidylcholines (pC) and triglycerides (TG). Similar trends in pC and TG chain length and saturation were seen in adults with hepatic steatosis; however, many of the specific lipids associated with NAFLD differed between children and adults. Five lipids replicated in adults (including PC(36:4)) have been directly linked to death and cardiometabolic disease, as well as indirectly via genetic variants. CONCLUSION: These findings suggest that, whilst similar pathways of lipid metabolism are perturbed in paediatric NAFLD as in cardiometabolic disease in adults, the specific lipid signature in children is different.


Assuntos
Doenças Cardiovasculares , Hepatopatia Gordurosa não Alcoólica , Adulto , Doenças Cardiovasculares/etiologia , Criança , Estudos Transversais , Humanos , Lipidômica , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Triglicerídeos
5.
Metabolomics ; 16(8): 83, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32710150

RESUMO

INTRODUCTION: Blood-based sample collection is a challenge, and dried blood spots (DBS) represent an attractive alternative. However, for DBSs to be an alternative to venous blood it is important that these samples are able to deliver comparable associations with clinical outcomes. To explore this we looked to see if lipid profile data could be used to predict the concentration of triglyceride, HDL, LDL and total cholesterol in DBSs using markers identified in plasma. OBJECTIVES: To determine if DBSs can be used as an alternative to venous blood in both research and clinical settings, and to determine if machine learning could predict 'clinical lipid' concentration from lipid profile data. METHODS: Lipid profiles were generated from plasma (n = 777) and DBS (n = 835) samples. Random forest was applied to identify and validate panels of lipid markers in plasma, which were translated into the DBS cohort to provide robust measures of the four 'clinical lipids'. RESULTS: In plasma samples panels of lipid markers were identified that could predict the concentration of the 'clinical lipids' with correlations between estimated and measured triglyceride, HDL, LDL and total cholesterol of 0.920, 0.743, 0.580 and 0.424 respectively. When translated into DBS samples, correlations of 0.836, 0.591, 0.561 and 0.569 were achieved for triglyceride, HDL, LDL and total cholesterol. CONCLUSION: DBSs represent an alternative to venous blood, however further work is required to improve the combined lipidomics and machine learning approach to develop it for use in health monitoring.


Assuntos
Teste em Amostras de Sangue Seco/métodos , Lipidômica/métodos , Lipídeos/análise , Adolescente , Biomarcadores , Coleta de Amostras Sanguíneas/métodos , Criança , Colesterol/análise , Colesterol/sangue , HDL-Colesterol/análise , HDL-Colesterol/sangue , LDL-Colesterol/análise , LDL-Colesterol/sangue , Estudos de Coortes , Feminino , Humanos , Lipídeos/sangue , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Países Baixos , Triglicerídeos/análise , Triglicerídeos/sangue
6.
Metabolomics ; 15(10): 129, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31555909

RESUMO

INTRODUCTION: This study was motivated by the report that infant development correlates with particular lipids in infant plasma. OBJECTIVE: The hypothesis was that the abundance of these candidate biomarkers is influenced by the dietary intake of the infant. METHODS: A cohort of 30 exclusively-breastfeeding mother-infant pairs from a small region of West Africa was used for this observational study. Plasma and milk from the mother and plasma from her infant were collected within 24 h, 3 months post partum. The lipid, sterol and glyceride composition was surveyed using direct infusion MS in positive and negative ion modes. Analysis employed a combination of univariate and multivariate tests. RESULTS: The lipid profiles of mother and infant plasma samples are similar but distinguishable, and both are distinct from milk. Phosphatidylcholines (PC), cholesteryl esters (CEs) and cholesterol were more abundant in mothers with respect to their infants, e.g. PC(34:1) was 5.66% in mothers but 3.61% in infants (p = 3.60 × 10-10), CE(18:2) was 8.05% in mothers but 5.18% in infants (p = 1.37 × 10-11) whilst TGs were lower in mothers with respect to their infants, e.g. TG(52:2) was 2.74% in mothers and 4.23% in infants (p = 1.63 × 10-05). A latent structure model showed that four lipids in infant plasma previously shown to be biomarkers clustered with cholesteryl esters in the maternal circulation. CONCLUSION: This study found evidence that the abundance of individual lipid isoforms associated with infant development are associated with the abundance of individual molecular species in the mother's circulation.


Assuntos
Aleitamento Materno , Lipídeos/sangue , Leite Humano/química , Plasma/química , Adolescente , Adulto , África Ocidental , Biomarcadores/sangue , Desenvolvimento Infantil , Colesterol/sangue , Ésteres do Colesterol/sangue , Feminino , Gâmbia , Glicerídeos/sangue , Humanos , Lactente , Recém-Nascido , Masculino , Mães , Fosfatidilcolinas/sangue , Estudos Prospectivos , Isoformas de Proteínas , Esteróis/sangue , Adulto Jovem
7.
Alzheimers Dement ; 15(6): 817-827, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31078433

RESUMO

INTRODUCTION: A critical and as-yet unmet need in Alzheimer's disease (AD) is the discovery of peripheral small molecule biomarkers. Given that brain pathology precedes clinical symptom onset, we set out to test whether metabolites in blood associated with pathology as indexed by cerebrospinal fluid (CSF) AD biomarkers. METHODS: This study analyzed 593 plasma samples selected from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, of individuals who were cognitively healthy (n = 242), had mild cognitive impairment (n = 236), or had AD-type dementia (n = 115). Logistic regressions were carried out between plasma metabolites (n = 883) and CSF markers, magnetic resonance imaging, cognition, and clinical diagnosis. RESULTS: Eight metabolites were associated with amyloid ß and one with t-tau in CSF, these were primary fatty acid amides (PFAMs), lipokines, and amino acids. From these, PFAMs, glutamate, and aspartate also associated with hippocampal volume and memory. DISCUSSION: PFAMs have been found increased and associated with amyloid ß burden in CSF and clinical measures.


Assuntos
Peptídeos beta-Amiloides , Amiloidose/sangue , Biomarcadores , Hipocampo , Memória/fisiologia , Metabolômica , Idoso , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Amiloidose/líquido cefalorraquidiano , Amiloidose/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Feminino , Hipocampo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Proteínas tau/sangue , Proteínas tau/líquido cefalorraquidiano
8.
PLoS Med ; 14(3): e1002266, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28323825

RESUMO

BACKGROUND: The metabolic basis of Alzheimer disease (AD) pathology and expression of AD symptoms is poorly understood. Omega-3 and -6 fatty acids have previously been linked to both protective and pathogenic effects in AD. However, to date little is known about how the abundance of these species is affected by differing levels of disease pathology in the brain. METHODS AND FINDINGS: We performed metabolic profiling on brain tissue samples from 43 individuals ranging in age from 57 to 95 y old who were stratified into three groups: AD (N = 14), controls (N = 14) and "asymptomatic Alzheimer's disease" (ASYMAD), i.e., individuals with significant AD neuropathology at death but without evidence for cognitive impairment during life (N = 15) from the autopsy sample of the Baltimore Longitudinal Study of Aging (BLSA). We measured 4,897 metabolite features in regions both vulnerable in the middle frontal and inferior temporal gyri (MFG and ITG) and resistant (cerebellum) to classical AD pathology. The levels of six unsaturated fatty acids (UFAs) in whole brain were compared in controls versus AD, and the differences were as follows: linoleic acid (p = 8.8 x 10-8, FC = 0.52, q = 1.03 x 10-6), linolenic acid (p = 2.5 x 10-4, FC = 0.84, q = 4.03 x 10-4), docosahexaenoic acid (p = 1.7 x 10-7, FC = 1.45, q = 1.24 x 10-6), eicosapentaenoic acid (p = 4.4 x 10-4, FC = 0.16, q = 6.48 x 10-4), oleic acid (p = 3.3 x 10-7, FC = 0.34, q = 1.46 x 10-6), and arachidonic acid (p = 2.98 x 10-5, FC = 0.75, q = 7.95 x 10-5). These fatty acids were strongly associated with AD when comparing the groups in the MFG and ITG, respectively: linoleic acid (p < 0.0001, p = 0.0006), linolenic acid (p < 0.0001, p = 0.002), docosahexaenoic acid (p < 0.0001, p = 0.0024), eicosapentaenoic acid (p = 0.0002, p = 0.0008), oleic acid (p < 0.0001, p = 0.0003), and arachidonic acid (p = 0.0001, p = 0.001). Significant associations were also observed between the abundance of these UFAs with neuritic plaque and neurofibrillary tangle burden as well as domain-specific cognitive performance assessed during life. Based on the regional pattern of differences in brain tissue levels of these metabolites, we propose that alterations in UFA metabolism represent both global metabolic perturbations in AD as well as those related to specific features of AD pathology. Within the middle frontal gyrus, decrements in linoleic acid, linolenic acid, and arachidonic acid (control>ASYMAD>AD) and increases in docosahexanoic acid (AD>ASYMAD>control) may represent regionally specific threshold levels of these metabolites beyond which the accumulation of AD pathology triggers the expression of clinical symptoms. The main limitation of this study is the relatively small sample size. There are few cohorts with extensive longitudinal cognitive assessments during life and detailed neuropathological assessments at death, such as the BLSA. CONCLUSIONS: The findings of this study suggest that unsaturated fatty acid metabolism is significantly dysregulated in the brains of patients with varying degrees of Alzheimer pathology.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/metabolismo , Disfunção Cognitiva/fisiopatologia , Ácidos Graxos/metabolismo , Metaboloma , Idoso , Idoso de 80 Anos ou mais , Baltimore , Cognição , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade
9.
Eur Respir J ; 49(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28642310

RESUMO

Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and a leading cause of mortality and morbidity worldwide. The aim of this study was to investigate the sex dependency of circulating metabolic profiles in COPD.Serum from healthy never-smokers (healthy), smokers with normal lung function (smokers), and smokers with COPD (COPD; Global Initiative for Chronic Obstructive Lung Disease stages I-II/A-B) from the Karolinska COSMIC cohort (n=116) was analysed using our nontargeted liquid chromatography-high resolution mass spectrometry metabolomics platform.Pathway analyses revealed that several altered metabolites are involved in oxidative stress. Supervised multivariate modelling showed significant classification of smokers from COPD (p=2.8×10-7). Sex stratification indicated that the separation was driven by females (p=2.4×10-7) relative to males (p=4.0×10-4). Significantly altered metabolites were confirmed quantitatively using targeted metabolomics. Multivariate modelling of targeted metabolomics data confirmed enhanced metabolic dysregulation in females with COPD (p=3.0×10-3) relative to males (p=0.10). The autotaxin products lysoPA (16:0) and lysoPA (18:2) correlated with lung function (forced expiratory volume in 1 s) in males with COPD (r=0.86; p<0.0001), but not females (r=0.44; p=0.15), potentially related to observed dysregulation of the miR-29 family in the lung.These findings highlight the role of oxidative stress in COPD, and suggest that sex-enhanced dysregulation in oxidative stress, and potentially the autotaxin-lysoPA axis, are associated with disease mechanisms and/or prevalence.


Assuntos
Metabolômica/métodos , Doença Pulmonar Obstrutiva Crônica , Fumar , Cromatografia Líquida/métodos , Estudos Transversais , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória/métodos , Fatores Sexuais , Fumar/epidemiologia , Fumar/metabolismo , Fumar/fisiopatologia , Estatística como Assunto , Suécia
10.
Eur Respir J ; 47(6): 1645-56, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26965288

RESUMO

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality; however, the role of inflammatory mediators in its pathobiology remains unclear. The aim of this study was to investigate the influence of gender in COPD on lipid mediator levels.Bronchoalveolar lavage fluid (BALF) and serum were obtained from healthy never-smokers, smokers and COPD patients (Global Initiative for Chronic Obstructive Lung Disease stage I-II/A-B) (n=114). 94 lipid mediators derived from the cytochrome-P450, lipoxygenase, and cyclooxygenase pathways were analysed by liquid chromatography-mass spectrometry.Multivariate modelling identified a 9-lipid panel in BALF that classified female smokers with COPD from healthy female smokers (p=6×10(-6)). No differences were observed for the corresponding male population (p=1.0). These findings were replicated in an independent cohort with 92% accuracy (p=0.005). The strongest drivers were the cytochrome P450-derived epoxide products of linoleic acid (leukotoxins) and their corresponding soluble epoxide hydrolase (sEH)-derived products (leukotoxin-diols). These species correlated with lung function (r=0.87; p=0.0009) and mRNA levels of enzymes putatively involved in their biosynthesis (r=0.96; p=0.003). Leukotoxin levels correlated with goblet cell abundance (r=0.72; p=0.028).These findings suggest a mechanism by which goblet cell-associated cytochrome-P450 and sEH activity produce elevated leukotoxin-diol levels, which play a putative role in the clinical manifestations of COPD in a female-dominated disease sub-phenotype.


Assuntos
Ácido Linoleico/química , Lipídeos/química , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Índice de Massa Corporal , Líquido da Lavagem Broncoalveolar , Estudos de Coortes , Estudos Transversais , Sistema Enzimático do Citocromo P-450/química , Feminino , Voluntários Saudáveis , Humanos , Lipoxigenases/química , Masculino , Menopausa , Pessoa de Meia-Idade , Fenótipo , Prostaglandina-Endoperóxido Sintases/química , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Testes de Função Respiratória , Fatores Sexuais , Fumar
11.
J Proteome Res ; 14(1): 557-66, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25361234

RESUMO

Psoriasis is an immune-mediated highly heterogeneous skin disease in which genetic as well as environmental factors play important roles. In spite of the local manifestations of the disease, psoriasis may progress to affect organs deeper than the skin. These effects are documented by epidemiological studies, but they are not yet mechanistically understood. In order to provide insight into the systemic effects of psoriasis, we performed a nontargeted high-resolution LC-MS metabolomics analysis to measure plasma metabolites from individuals with mild or severe psoriasis as well as healthy controls. Additionally, the effects of the anti-TNFα drug Etanercept on metabolic profiles were investigated in patients with severe psoriasis. Our analyses identified significant psoriasis-associated perturbations in three metabolic pathways: (1) arginine and proline, (2) glycine, serine and threonine, and (3) alanine, aspartate, and glutamate. Etanercept treatment reversed the majority of psoriasis-associated trends in circulating metabolites, shifting the metabolic phenotypes of severe psoriasis toward that of healthy controls. Circulating metabolite levels pre- and post-Etanercept treatment correlated with psoriasis area and severity index (PASI) clinical scoring (R(2) = 0.80; p < 0.0001). Although the responsible mechanism(s) are unclear, these results suggest that psoriasis severity-associated metabolic perturbations may stem from increased demand for collagen synthesis and keratinocyte hyperproliferation or potentially the incidence of cachexia. Data suggest that levels of circulating amino acids are useful for monitoring both the severity of disease as well as therapeutic response to anti-TNFα treatment.


Assuntos
Aminoácidos/sangue , Etanercepte/farmacologia , Metabolômica/métodos , Psoríase/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Aminoácidos/efeitos dos fármacos , Cromatografia Líquida/métodos , Estudos de Coortes , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Análise Multivariada , Psoríase/genética , Índice de Gravidade de Doença
12.
J Immunol ; 191(6): 3090-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23956421

RESUMO

The demand for controlling T cell responses via dendritic cell (DC) vaccines initiated a quest for reliable and feasible DC modulatory strategies that would facilitate cytotoxicity against tumors or tolerance in autoimmunity. We studied endogenous mechanisms in developing monocyte-derived DCs (MoDCs) that can induce inflammatory or suppressor programs during differentiation, and we identified a powerful autocrine pathway that, in a cell concentration-dependent manner, strongly interferes with inflammatory DC differentiation. MoDCs developing at low cell culture density have superior ability to produce inflammatory cytokines, to induce Th1 polarization, and to migrate toward the lymphoid tissue chemokine CCL19. On the contrary, MoDCs originated from dense cultures produce IL-10 but no inflammatory cytokines upon activation. DCs from high-density cultures maintained more differentiation plasticity and can develop to osteoclasts. The cell concentration-dependent pathway was independent of peroxisome proliferator-activated receptor γ (PPARγ), a known endogenous regulator of MoDC differentiation. Instead, it acted through lactic acid, which accumulated in dense cultures and induced an early and long-lasting reprogramming of MoDC differentiation. Our results suggest that the lactic acid-mediated inhibitory pathway could be efficiently manipulated in developing MoDCs to influence the immunogenicity of DC vaccines.


Assuntos
Comunicação Autócrina/imunologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Ácido Láctico/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Ácido Láctico/imunologia , Reação em Cadeia da Polimerase , Transcriptoma
13.
Antioxidants (Basel) ; 13(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790613

RESUMO

Microtubule-associated protein Tau (MAPT) is strongly associated with the development of neurodegenerative diseases. In addition to driving the formation of neurofibrillary tangles (NFT), mutations in the MAPT gene can also cause oxidative stress through hyperpolarisation of the mitochondria. This study explores the impact that MAPT mutation is having on phospholipid metabolism in iPSC-derived dopamine neurons, and to determine if these effects are exacerbated by mitochondrial and endoplasmic reticulum stress. Neurons that possessed a mutated copy of MAPT were shown to have significantly higher levels of oxo-phospholipids (Oxo-PL) than wild-type neurons. Oxidation of the hydrophobic fatty acid side chains changes the chemistry of the phospholipid leading to disruption of membrane function and potential cell lysis. In wild-type neurons, both mitochondrial and endoplasmic reticulum stress increased Oxo-PL abundance; however, in MAPT mutant neurons mitochondrial stress appeared to have a minimal effect. Endoplasmic reticulum stress, surprisingly, reduced the abundance of Oxo-PL in MAPT mutant dopamine neurons, and we postulate that this reduction could be modulated through hyperactivation of the unfolded protein response and X-box binding protein 1. Overall, the results of this study contribute to furthering our understanding of the regulation and impact of oxidative stress in Parkinson's disease pathology.

14.
Eur Respir J ; 42(3): 802-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23397306

RESUMO

Inflammatory lung diseases are highly complex in respect of pathogenesis and relationships between inflammation, clinical disease and response to treatment. Sophisticated large-scale analytical methods to quantify gene expression (transcriptomics), proteins (proteomics), lipids (lipidomics) and metabolites (metabolomics) in the lungs, blood and urine are now available to identify biomarkers that define disease in terms of combined clinical, physiological and patho-biological abnormalities. The aspiration is that these approaches will improve diagnosis, i.e. define pathological phenotypes, and facilitate the monitoring of disease and therapy, and also, unravel underlying molecular pathways. Biomarker studies can either select predefined biomarker(s) measured by specific methods or apply an "unbiased" approach involving detection platforms that are indiscriminate in focus. This article reviews the technologies presently available to study biomarkers of lung disease within the 'omics field. The contributions of the individual 'omics analytical platforms to the field of respiratory diseases are summarised, with the goal of providing background on their respective abilities to contribute to systems medicine-based studies of lung disease.


Assuntos
Biomarcadores/metabolismo , Pneumopatias/metabolismo , Testes Respiratórios/métodos , Líquido da Lavagem Broncoalveolar/química , Cromatografia Líquida , Perfilação da Expressão Gênica/métodos , Humanos , Inflamação , Metabolismo dos Lipídeos , Pneumopatias/genética , Pneumopatias/imunologia , Espectrometria de Massas/métodos , Metabolômica/métodos , Fenótipo , Pneumonia/genética , Pneumonia/metabolismo , Proteômica/métodos , Escarro/química
15.
Metabolites ; 13(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677037

RESUMO

The metabolic basis of Parkinson's disease pathology is poorly understood. However, the involvement of mitochondrial and endoplasmic reticulum stress in dopamine neurons in disease aetiology is well established. We looked at the effect of rotenone- and tunicamycin-induced mitochondrial and ER stress on the metabolism of wild type and microtubule-associated protein tau mutant dopamine neurons. Dopamine neurons derived from human isolated iPSCs were subjected to mitochondrial and ER stress using RT and TM, respectively. Comprehensive metabolite profiles were generated using a split phase extraction analysed by reversed phase lipidomics whilst the aqueous phase was measured using HILIC metabolomics. Mitochondrial and ER stress were both shown to cause significant dysregulation of metabolism with RT-induced stress producing a larger shift in the metabolic profile of both wild type and MAPT neurons. Detailed analysis showed that accumulation of triglycerides was a significant driver of metabolic dysregulation in response to both stresses in both genotypes. Whilst the consequence is similar, the mechanisms by which triglyceride accumulation occurs in dopamine neurons in response to mitochondrial and ER stress are very different. Thus, improving our understanding of how these mechanisms drive the observed triglyceride accumulation can potentially open up new therapeutic avenues.

16.
Metabolites ; 13(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37367926

RESUMO

The identification of metabolomic biomarkers relies on the analysis of large cohorts of patients compared to healthy controls followed by the validation of markers in an independent sample set. Indeed, circulating biomarkers should be causally linked to pathology to ensure that changes in the marker precede changes in the disease. However, this approach becomes unfeasible in rare diseases due to the paucity of samples, necessitating the development of new methods for biomarker identification. The present study describes a novel approach that combines samples from both mouse models and human patients to identify biomarkers of OPMD. We initially identified a pathology-specific metabolic fingerprint in murine dystrophic muscle. This metabolic fingerprint was then translated into (paired) murine serum samples and then to human plasma samples. This study identified a panel of nine candidate biomarkers that could predict muscle pathology with a sensitivity of 74.3% and specificity of 100% in a random forest model. These findings demonstrate that the proposed approach can identify biomarkers with good predictive performance and a higher degree of confidence in their relevance to pathology than markers identified in a small cohort of human samples alone. Therefore, this approach has a high potential utility for identifying circulating biomarkers in rare diseases.

17.
Cells ; 12(17)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37681895

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterised by progressive degeneration of the motor neurones. An expanded GGGGCC (G4C2) hexanucleotide repeat in C9orf72 is the most common genetic cause of ALS and frontotemporal dementia (FTD); therefore, the resulting disease is known as C9ALS/FTD. Here, we employ a Drosophila melanogaster model of C9ALS/FTD (C9 model) to investigate a role for specific medium-chain fatty acids (MCFAs) in reversing pathogenic outcomes. Drosophila larvae overexpressing the ALS-associated dipeptide repeats (DPRs) in the nervous system exhibit reduced motor function and neuromuscular junction (NMJ) defects. We show that two MCFAs, nonanoic acid (NA) and 4-methyloctanoic acid (4-MOA), can ameliorate impaired motor function in C9 larvae and improve NMJ degeneration, although their mechanisms of action are not identical. NA modified postsynaptic glutamate receptor density, whereas 4-MOA restored defects in the presynaptic vesicular release. We also demonstrate the effects of NA and 4-MOA on metabolism in C9 larvae and implicate various metabolic pathways as dysregulated in our ALS model. Our findings pave the way to identifying novel therapeutic targets and potential treatments for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Animais , Esclerose Lateral Amiotrófica/genética , Drosophila , Drosophila melanogaster , Ácidos Graxos , Junção Neuromuscular , Larva
18.
STAR Protoc ; 3(4): 101679, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36115026

RESUMO

This protocol outlines a translational lipidomic approach to discover lipid biomarkers that could predict morphometric body and histological organ measurements (e.g., weight and adiposity gains) during specific stages of life (e.g., early life). We describe procedures ranging from animal experimentation and histological analyses to downstream analytical steps through lipid profiling, both in mice and humans. This protocol represents a reliable and versatile approach to translate and validate candidate lipid biomarkers from animal models to a human cohort. For complete details on the use and execution of this protocol, please refer to Olga et al. (2021).


Assuntos
Lipidômica , Lipídeos , Lactente , Humanos , Animais , Camundongos , Modelos Animais de Doenças
19.
Mol Metab ; 59: 101457, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150907

RESUMO

OBJECTIVE: Polyunsaturated fatty acid (PUFA) supplements have been trialled as a treatment for a number of conditions and produced a variety of results. This variety is ascribed to the supplements, that often comprise a mixture of fatty acids, and to different effects in different organs. In this study, we tested the hypothesis that the supplementation of individual PUFAs has system-level effects that are dependent on the molecular structure of the PUFA. METHODS: We undertook a network analysis using Lipid Traffic Analysis to identify both local and system-level changes in lipid metabolism using publicly available lipidomics data from a mouse model of supplementation with FA(20:4n-6), FA(20:5n-3), and FA(22:6n-3); arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, respectively. Lipid Traffic Analysis is a new computational/bioinformatics tool that uses the spatial distribution of lipids to pinpoint changes or differences in control of metabolism, thereby suggesting mechanistic reasons for differences in observed lipid metabolism. RESULTS: There was strong evidence for changes to lipid metabolism driven by and dependent on the structure of the supplemented PUFA. Phosphatidylcholine and triglycerides showed a change in the variety more than the total number of variables, whereas phosphatidylethanolamine and phosphatidylinositol showed considerable change in both which variables and the number of them, in a highly PUFA-dependent manner. There was also evidence for changes to the endogenous biosynthesis of fatty acids and to both the elongation and desaturation of fatty acids. CONCLUSIONS: These results show that the full biological impact of PUFA supplementation is far wider than any single-organ effect and implies that supplementation and dosing with PUFAs require a system-level assessment.


Assuntos
Ácidos Graxos Insaturados , Metabolismo dos Lipídeos , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Camundongos
20.
Clin Nutr ; 41(6): 1290-1296, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35537379

RESUMO

BACKGROUND & OBJECTIVES: Early life is a critical window for adiposity programming and metabolic profile may affect this programming. We investigated if plasma metabolites at age 3 months were associated with fat mass, fat free mass and abdominal subcutaneous and visceral fat outcomes at age 2 years in a cohort of healthy infants and if these associations were different between infants receiving exclusive breastfeeding (EBF) and those with exclusive formula feeding (EFF). METHODS: In 318 healthy term-born infants, we determined body composition by Dual Energy X-ray absorptiometry (DXA) and visceral fat by abdominal ultrasound at 2 age years. High-throughput metabolic profiling was performed on blood samples collected at age 3 months. Tertiles were generated for each body composition outcome and differences in plasma metabolite levels at age 3 months between infants with high and low body composition outcomes at age 2 years were evaluated in general, as well as separately in EBF- and EFF-infants. RESULTS: Distinct plasma metabolite variables identified at age 3 months were associated with body composition at 2 years. These metabolites included several classes of lyso-phospholipids. Associations between the metabolites at age 3 months and fat mass index, fat mass percentage, fat free mass index and visceral fat at 2 years were predominantly found in EBF-infants. CONCLUSION: Associations between plasma metabolite levels at age 3 months and high body fat mass at 2 years depend on infant feeding type. These findings contribute to our insight into the importance of infant feeding on adiposity programming in early life.


Assuntos
Adiposidade , Composição Corporal , Aleitamento Materno , Pré-Escolar , Feminino , Humanos , Lactente , Gordura Intra-Abdominal , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA