Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35955667

RESUMO

Gluconacetobacter diazotrophicus has been the focus of several studies aiming to understand the mechanisms behind this endophytic diazotrophic bacterium. The present study is the first global analysis of the early transcriptional response of exponentially growing G. diazotrophicus to iron, an essential cofactor for many enzymes involved in various metabolic pathways. RNA-seq, targeted gene mutagenesis and computational motif discovery tools were used to define the G. diazotrophicusfur regulon. The data analysis showed that genes encoding functions related to iron homeostasis were significantly upregulated in response to iron limitations. Certain genes involved in secondary metabolism were overexpressed under iron-limited conditions. In contrast, it was observed that the expression of genes involved in Fe-S cluster biosynthesis, flagellar biosynthesis and type IV secretion systems were downregulated in an iron-depleted culture medium. Our results support a model that controls transcription in G. diazotrophicus by fur function. The G. diazotrophicusfur protein was able to complement an E. colifur mutant. These results provide new insights into the effects of iron on the metabolism of G. diazotrophicus, as well as demonstrate the essentiality of this micronutrient for the main characteristics of plant growth promotion by G. diazotrophicus.


Assuntos
Gluconacetobacter , Ferro , Proteínas de Bactérias/metabolismo , Meios de Cultura/farmacologia , Ferro/metabolismo , Transcriptoma
2.
Plants (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616175

RESUMO

Herbaspirillum seropedicae is an endophytic bacterium that can fix nitrogen and synthesize phytohormones, which can lead to a plant growth-promoting effect when used as a microbial inoculant. Studies focused on mechanisms of action are crucial for a better understanding of the bacteria-plant interaction and optimization of plant growth-promoting response. This work aims to understand the underlined mechanisms responsible for the early stimulatory growth effects of H. seropedicae inoculation in maize. To perform these studies, we combined transcriptomic and proteomic approaches with physiological analysis. The results obtained eight days after inoculation (d.a.i) showed increased root biomass (233 and 253%) and shoot biomass (249 and 264%), respectively, for the fresh and dry mass of maize-inoculated seedlings and increased green content and development. Omics data analysis, before a positive biostimulation phenotype (5 d.a.i.) revealed that inoculation increases N-uptake and N-assimilation machinery through differentially expressed nitrate transporters and amino acid pathways, as well carbon/nitrogen metabolism integration by the tricarboxylic acid cycle and the polyamine pathway. Additionally, phytohormone levels of root and shoot tissues increased in bacterium-inoculated-maize plants, leading to feedback regulation by the ubiquitin-proteasome system. The early biostimulatory effect of H. seropedicae partially results from hormonal modulation coupled with efficient nutrient uptake-assimilation and a boost in primary anabolic metabolism of carbon-nitrogen integrative pathways.

3.
Microbiol Res ; 243: 126643, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33227680

RESUMO

Seeds are reservoirs of beneficial and harmful microorganism that modulates plant growth and health. Here, we access seed to seedling bacteriome assembly modified by seed-disinfection and the underlined effect over maize germination performance and root-seedlings microbial colonization. Seed-disinfection was performed with sodium hypochlorite (1.25 %, 30 min), resulting in a reduction of the cultivable-dependent fraction of seed-borne bacteria population, but not significantly detected by real-time PCR, microscopy, and biochemical analysis of the roots on germinated seeds. 16S rRNA sequencing revealed that bacteriome of non-germinated seeds and roots of 5-d germinated seeds exhibited similar diversity and did not differ in the structure concerning seed-disinfection. On the other hand, the relative abundance reduction of the genera f_Enterobacteriaceae_922761 (unassigned genus), Azospirillum, and Acinetobacter in disinfected-seed prior germination seems to display changes in prominence of several new taxa in the roots of germinated seeds. Interestingly, this bacteriome community rebuilt negatively affected the germination speed and growth of maize plantlets. Additionally, bacteriome re-shape increased the maize var. DKB 177 susceptible to the seed-borne plant pathogen Penicillium sp. Such changes in the natural seed-borne composition removed the natural barrier, increasing susceptibility to pathogens, impairing disinfected seeds to germinate, and develop. We conclude that bacteria borne in seeds modulate the relative abundance of taxa colonizing emerged roots, promote germination, seedling growth, and protect the maize against fungal pathogens.


Assuntos
Bactérias/isolamento & purificação , Fungos/fisiologia , Sementes/microbiologia , Zea mays/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Germinação , Microbiota , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Sementes/crescimento & desenvolvimento , Zea mays/microbiologia
4.
PLoS One ; 13(12): e0207863, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30550601

RESUMO

The stalk apoplast fluid of sugarcane contains different sugars, organic acids and amino acids that may supply the demand for carbohydrates by endophytic bacteria including diazotrophs P. tropica (syn. B. tropica) strain Ppe8, isolated from sugarcane, is part of the bacterial consortium recommended as inoculant to sugarcane. However, little information has been accumulated regarding this plant-bacterium interaction considering that it colonizes internal sugarcane tissues. Here, we made use of the RNA-Seq transcriptomic analysis to study the influence of sugarcane stalk apoplast fluid on Ppe8 gene expression. The bacterium was grown in JMV liquid medium (100 ml), divided equally and then supplemented with 50 ml of fresh JMV medium or 50 ml of apoplast fluid extracted from sugarcane variety RB867515. Total RNA was extracted 2 hours later, the rRNAs were depleted and mRNAs used to construct libraries to sequence the fragments using Ion Torrent technology. The mapping and statistical analysis were carried out with CLC Genomics Workbench software. The RNA-seq data was validated by RT-qPCR using the reference genes fliP1, paaF, and groL. The data analysis showed that 544 genes were repressed and 153 genes were induced in the presence of apoplast fluid. Genes that induce plant defense responses, genes related to chemotaxis and movements were repressed in the presence of apoplast fluid, indicating that strain Ppe8 recognizes the apoplast fluid as a plant component. The expression of genes involved in bacterial metabolism was regulated (up and down), suggesting that the metabolism of strain Ppe8 is modulated by the apoplast fluid. These results suggest that Ppe8 alters its gene expression pattern in the presence of apoplast fluid mainly in order to use compounds present in the fluid as well as to avoid the induction of plant defense mechanisms. This is a pioneer study showing the role played by the sugarcane apoplast fluid on the global modulation of genes in P. tropica strain Ppe8.


Assuntos
Burkholderiaceae/genética , Burkholderiaceae/metabolismo , Endófitos/genética , Endófitos/metabolismo , Saccharum/metabolismo , Saccharum/microbiologia , Aminoácidos/metabolismo , Transporte Biológico Ativo , Metabolismo dos Carboidratos , Movimento Celular/genética , Parede Celular/genética , Quimiotaxia/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Estruturas Vegetais/metabolismo , Estruturas Vegetais/microbiologia , Transdução de Sinais
5.
Front Microbiol ; 7: 1572, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27774087

RESUMO

Gluconacetobacter diazotrophicus is a beneficial nitrogen-fixing endophyte found in association with sugarcane plants and other important crops. Beneficial effects of G. diazotrophicus on sugarcane growth and productivity have been attributed to biological nitrogen fixation process and production of phytohormones especially indole-3-acetic acid (IAA); however, information about the biosynthesis and function of IAA in G. diazotrophicus is still scarce. Therefore, the aim of this work was to identify genes and pathways involved in IAA biosynthesis in this bacterium. In our study, the screening of two independent Tn5 mutant libraries of PAL5T strain using the Salkowski colorimetric assay revealed two mutants (Gdiaa34 and Gdiaa01), which exhibited 95% less indolic compounds than the parental strain when grown in LGIP medium supplemented with L-tryptophan. HPLC chromatograms of the wild-type strain revealed the presence of IAA and of the biosynthetic intermediates indole-3-pyruvic acid (IPyA) and indole-3-lactate (ILA). In contrast, the HPLC profiles of both mutants showed no IAA but only a large peak of non-metabolized tryptophan and low levels of IPyA and ILA were detected. Molecular characterization revealed that Gdiaa01 and Gdiaa34 mutants had unique Tn5 insertions at different sites within the GDI2456 open read frame, which is predicted to encode a L-amino acid oxidase (LAAO). GDI2456 (lao gene) forms a cluster with GDI2455 and GDI2454 ORFs, which are predicted to encode a cytochrome C and an RidA protein, respectively. RT-qPCR showed that transcript levels of lao. cccA, and ridA genes were reduced in the Gdiaa01 as compared to PAL5T. In addition, rice plants inoculated with Gdiaa01 showed significantly smaller root development (length, surface area, number of forks and tips) than those plants inoculated with PAL5T. In conclusion, our study demonstrated that G. diazotrophicus PAL5T produces IAA via the IPyA pathway in cultures supplemented with tryptophan and provides evidence for the involvement of an L-amino acid oxidase gene cluster in the biosynthesis of IAA. Furthermore, we showed that the mutant strains with reduction in IAA biosynthesis ability, in consequence of the lower transcription levels of genes of the lao cluster, had remarkable effects on development of rice roots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA