RESUMO
Regulatory and effector cell responses to Plasmodium vivax, the most common human malaria parasite outside Africa, remain understudied in naturally infected populations. Here, we describe peripheral CD4+ T- and B-cell populations during and shortly after an uncomplicated P. vivax infection in 38 continuously exposed adult Amazonians. Consistent with previous observations, we found an increased frequency in CD4+ CD45RA- CD25+ FoxP3+ T regulatory cells that express the inhibitory molecule CTLA-4 during the acute infection, with a sustained expansion of CD21- CD27- atypical memory cells within the CD19+ B-cell compartment. Both Th1- and Th2-type subsets of CXCR5+ ICOShi PD-1+ circulating T follicular helper (cTfh) cells, which are thought to contribute to antibody production, were induced during P. vivax infection, with a positive correlation between overall cTfh cell frequency and IgG antibody titers to the P. vivax blood-stage antigen MSP119 . We identified significant changes in cell populations that had not been described in human malaria, such as an increased frequency of CTLA-4+ T follicular regulatory cells that antagonize Tfh cells, and a decreased frequency of circulating CD24hi CD27+ B regulatory cells in response to acute infection. In conclusion, we disclose a complex immunoregulatory network that is critical to understand how naturally acquired immunity develops in P. vivax malaria.
Assuntos
Malária Vivax , Plasmodium vivax , Adulto , Humanos , Plasmodium vivax/fisiologia , Antígeno CTLA-4 , Linfócitos T Auxiliares-Indutores , Linfócitos T CD4-PositivosRESUMO
BACKGROUND: In several Apicomplexa, the formation of moving junctions (MJs) at the interface between the external membranes of the invading parasite and the host cell is essential for the process of parasite invasion. In Plasmodium falciparum and Toxoplasma gondii, the MJ is composed of the Apical Membrane Antigen 1 (AMA1) and Rhoptry Neck Proteins (RONs) complex; specifically, AMA1 interacts with RON2 during host cell invasion. METHODS: Recombinant proteins based on Plasmodium vivax RON2 (A2033-P2100) and its synthetic peptide fragments, one cyclic and one linear, based on PvRON2 (D2035-T2074) were generated and used to evaluate the interaction with P. vivax AMA1 (PvAMA1) by the far western blot, surface plasmon resonance (SPR), and isothermal titration microcalorimetry (ITC) methods. The structural studies of peptides were performed by circular dichroism, and the structural analysis of the complex of PvAMA1 with peptides based on PvRON2 (D2035-T2074) was conducted with small-angle X-ray scattering (SAXS). RESULTS: Surface plasmon resonance (KD = 23.91 ± 2.078 µmol/L) and ITC (K = 3 × 105 mol/L) studies conclusively showed an interaction between the cyclic peptide based on PvRON2 and PvAMA1-His6. In contrast, the linear peptide and recombinant PvRON2 (GST fusion protein) did not show an interaction with PvAMA1. However, the interaction among recombinant proteins PvRON2.2 and PvAMA1-His6 was possible to show by far western blot. CONCLUSIONS: The results show that the PvRON2 structure, particularly the S-S bond between C2051 and C2063, is determinant for the existence of the interaction between PvAMA1 and PvRON2.
Assuntos
Antígenos de Protozoários/imunologia , Proteínas de Membrana/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Proteínas de Membrana/metabolismo , Plasmodium vivax/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismoRESUMO
BACKGROUND: Technical limitations for culturing the human malaria parasite Plasmodium vivax have impaired the discovery of vaccine candidates, challenging the malaria eradication agenda. The immunogenicity of the M2 domain of the Merozoite Adhesive Erythrocytic Binding Protein (MAEBL) antigen cloned from the Plasmodium yoelii murine parasite, has been previously demonstrated. RESULTS: Detailed epitope mapping of MAEBL through immunoinformatics identified several MHCI, MHCII and B cell epitopes throughout the peptide, with several of these lying in the M2 domain and being conserved between P. vivax, P. yoelii and Plasmodium falciparum, hinting that the M2-MAEBL is pan-reactive. This hypothesis was tested through functional assays, showing that P. yoelii M2-MAEBL antisera are able to recognize and inhibit erythrocyte invasion from both P. falciparum and P. vivax parasites isolated from Thai patients, in ex vivo assays. Moreover, the sequence of the M2-MAEBL is shown to be highly conserved between P. vivax isolates from the Amazon and Thailand, indicating that the MAEBL antigen may constitute a vaccine candidate outwitting strain-specific immunity. CONCLUSIONS: The MAEBL antigen is promising candidate towards the development of a malaria vaccine.
Assuntos
Antígenos de Protozoários/imunologia , Mapeamento de Epitopos , Plasmodium yoelii/imunologia , Proteínas de Protozoários/imunologia , Animais , Antígenos de Protozoários/genética , Biologia Computacional , Sequência Conservada , Epitopos/genética , Epitopos/imunologia , Humanos , Vacinas Antimaláricas/isolamento & purificação , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle , Camundongos Endogâmicos C57BL , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Plasmodium yoelii/genética , Proteínas de Protozoários/genética , TailândiaRESUMO
The function and regulation of the immune response triggered during malaria is complex and poorly understood, and there is a particular paucity of studies conducted in humans infected with Plasmodium vivax. While it has been proposed that T-cell-effector responses are crucial for protection against blood-stage malaria in mice, the mechanisms behind this in humans remain poorly understood. Experimental models of malaria have shown that the regulatory molecules, cytotoxic T-lymphocyte attenuator-4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), and programmed death-1 (PD-1) are involved in the functional impairment of T cells during infection. Our goal was to define the role of these molecules during P. vivax malaria. We demonstrate that infection triggers the expression of regulatory molecules on T cells. The pattern of expression differs in CD4(+) and CD8(+) T cells. Higher frequencies of CD4(+) express more than 1 regulatory molecule compared to CD8(+) T cells. Moreover, lower proportions of CD4(+) T cells coexpress regulatory molecules, but are still able to proliferate. Importantly, simultaneously blockade of the CLTA-4, PD-1, and T-cell immunoglobulin and mucin-3 signaling restores the cytokine production by antigen-specific cells. These data support the hypothesis that upregulation of inhibitory receptors on T cells during P. vivax malaria impairs parasite-specific T-cell effector function.
Assuntos
Citocinas/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Tolerância Imunológica , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Adulto , Feminino , Humanos , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Malaria remains a world-threatening disease largely because of the lack of a long-lasting and fully effective vaccine. MAEBL is a type 1 transmembrane molecule with a chimeric cysteine-rich ectodomain homologous to regions of the Duffy binding-like erythrocyte binding protein and apical membrane antigen 1 (AMA1) antigens. Although MAEBL does not appear to be essential for the survival of blood-stage forms, ectodomains M1 and M2, homologous to AMA1, seem to be involved in parasite attachment to erythrocytes, especially M2. MAEBL is necessary for sporozoite infection of mosquito salivary glands and is expressed in liver stages. Here, the Plasmodium yoelii MAEBL-M2 domain was expressed in a prokaryotic vector. C57BL/6J mice were immunized with doses of P. yoelii recombinant protein rPyM2-MAEBL. High levels of antibodies, with balanced IgG1 and IgG2c subclasses, were achieved. rPyM2-MAEBL antisera were capable of recognizing the native antigen. Anti-MAEBL antibodies recognized different MAEBL fragments expressed in CHO cells, showing stronger IgM and IgG responses to the M2 domain and repeat region, respectively. After a challenge with P. yoelii YM (lethal strain)-infected erythrocytes (IE), up to 90% of the immunized animals survived and a reduction of parasitemia was observed. Moreover, splenocytes harvested from immunized animals proliferated in a dose-dependent manner in the presence of rPyM2-MAEBL. Protection was highly dependent on CD4(+), but not CD8(+), T cells toward Th1. rPyM2-MAEBL antisera were also able to significantly inhibit parasite development, as observed in ex vivo P. yoelii erythrocyte invasion assays. Collectively, these findings support the use of MAEBL as a vaccine candidate and open perspectives to understand the mechanisms involved in protection.
Assuntos
Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Plasmodium yoelii/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Feminino , Humanos , Imunização , Malária/imunologia , Malária/mortalidade , Malária/parasitologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/química , Vacinas Antimaláricas/genética , Masculino , Merozoítos/química , Merozoítos/crescimento & desenvolvimento , Merozoítos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium yoelii/química , Plasmodium yoelii/genética , Plasmodium yoelii/crescimento & desenvolvimento , Estrutura Terciária de Proteína , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/genética , Esporozoítos/química , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/imunologiaRESUMO
In a recent vaccine trial performed with African children, immunization with a recombinant protein based on Plasmodium falciparum apical membrane antigen 1 (AMA-1) conferred a significant degree of strain-specific resistance against malaria. To contribute to the efforts of generating a vaccine against Plasmodium vivax malaria, we expressed the ectodomain of P. vivax AMA-1 (PvAMA-1) as a secreted soluble protein in the methylotrophic yeast Pichia pastoris. Recognized by a high percentage of sera from individuals infected by P. vivax, this recombinant protein was found to have maintained its antigenicity. The immunogenicity of this protein was evaluated in mice using immunization protocols that included homologous and heterologous prime-boost strategies with plasmid DNA and recombinant protein. We used the following formulations containing different adjuvants: aluminum salts (Alum), Bordetella pertussis monophosphoryl lipid A (MPLA), flagellin FliC from Salmonella enterica serovar Typhimurium, saponin Quil A, or incomplete Freund's adjuvant (IFA). The formulations containing the adjuvants Quil A or IFA elicited the highest IgG antibody titers. Significant antibody titers were also obtained using a formulation developed for human use containing MPLA or Alum plus MPLA. Recombinant PvAMA-1 produced under "conditions of good laboratory practice" provided a good yield, high purity, low endotoxin levels, and no microbial contaminants and reproduced the experimental immunizations. Most relevant for vaccine development was the fact that immunization with PvAMA-1 elicited invasion-inhibitory antibodies against different Asian isolates of P. vivax. Our results show that AMA-1 expressed in P. pastoris is a promising antigen for use in future preclinical and clinical studies.
Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Proteínas de Membrana/imunologia , Pichia/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Leveduras/imunologia , Adjuvantes Imunológicos/genética , Animais , Formação de Anticorpos/imunologia , Antígenos de Protozoários/genética , Feminino , Humanos , Imunização/métodos , Imunoglobulina G/imunologia , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária Vivax/genética , Malária Vivax/imunologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Pichia/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Leveduras/genéticaRESUMO
Plasmodium vivax is the most widespread and the second most prevalent malaria-causing species in the world. Current measures used to control the transmission of this disease would benefit from the development of an efficacious vaccine. In the case of the deadly parasite P. falciparum, the recombinant RTS,S vaccine containing the circumsporozoite antigen (CSP) consistently protects 30 to 50% of human volunteers against infection and is undergoing phase III clinical trials in Africa with similar efficacy. These findings encouraged us to develop a P. vivax vaccine containing the three circulating allelic forms of P. vivax CSP. Toward this goal, we generated three recombinant bacterial proteins representing the CSP alleles, as well as a hybrid polypeptide called PvCSP-All-CSP-epitopes. This hybrid contains the conserved N and C termini of P. vivax CSP and the three variant repeat domains in tandem. We also generated simian and human recombinant replication-defective adenovirus vectors expressing PvCSP-All-CSP-epitopes. Mice immunized with the mixture of recombinant proteins in a formulation containing the adjuvant poly(I·C) developed high and long-lasting serum IgG titers comparable to those elicited by proteins emulsified in complete Freund's adjuvant. Antibody titers were similar in mice immunized with homologous (protein-protein) and heterologous (adenovirus-protein) vaccine regimens. The antibodies recognized the three allelic forms of CSP, reacted to the repeated and nonrepeated regions of CSP, and recognized sporozoites expressing the alleles VK210 and VK247. The vaccine formulations described in this work should be useful for the further development of an anti-P. vivax vaccine.
Assuntos
Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Vacinação/métodos , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antiprotozoários/sangue , Feminino , Imunoglobulina G/sangue , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Malária Vivax/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium vivax/genética , Poli I-C/administração & dosagem , Proteínas de Protozoários/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologiaRESUMO
Malaria caused byPlasmodium vivaxis a pressing public health problem in tropical and subtropical areas.However, little progress has been made toward developing a P. vivaxvaccine, with only three candidates being tested in clinical studies. We previously reported that one chimeric recombinant protein (PvCSP-All epitopes) containing the conserved C-terminus of the P. vivax Circumsporozoite Protein (PvCSP), the three variant repeat domains, and aToll-like receptor-3 agonist,Poly(I:C), as an adjuvant (polyinosinic-polycytidylic acid, a dsRNA analog mimicking viral RNA), elicits strong antibody-mediated immune responses in mice to each of the three allelic forms of PvCSP. In the present study, a pre-clinical safety evaluation was performed to identify potential local and systemic toxic effects of the PvCSP-All epitopes combined with the Poly-ICLC (Poly I:C plus poly-L-lysine, Hiltonol®) or Poly-ICLC when subcutaneously injected into C57BL/6 mice and New Zealand White Rabbits followed by a 21-day recovery period. Overall, all observations were considered non-adverse and were consistent with the expected inflammatory response and immune stimulation following vaccine administration. High levels of vaccine-induced specific antibodies were detected both in mice and rabbits. Furthermore, mice that received the vaccine formulation were protected after the challenge with Plasmodium berghei sporozoites expressing CSP repeats from P. vivax sporozoites (Pb/Pv-VK210). In conclusion, in these non-clinical models, repeated dose administrations of the PvCSP-All epitopes vaccine adjuvanted with a Poly-ICLC were immunogenic, safe, and well tolerated.
Assuntos
Carboximetilcelulose Sódica/análogos & derivados , Vacinas Antimaláricas , Malária Vivax , Polilisina/análogos & derivados , Camundongos , Animais , Coelhos , Malária Vivax/prevenção & controle , Poli I-C , Plasmodium vivax , Proteínas de Protozoários/genética , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos , Proteínas Recombinantes , Epitopos , Anticorpos AntiprotozoáriosRESUMO
Malaria remains a global health challenge, necessitating the development of effective vaccines. The RTS,S vaccination prevents Plasmodium falciparum (Pf) malaria but is ineffective against Plasmodium vivax (Pv) disease. Herein, we evaluated the murine immunogenicity of a recombinant PvCSP incorporating prevalent polymorphisms, adjuvanted with Alhydrogel or Poly I:C. Both formulations induced prolonged IgG responses, with IgG1 dominance by the Alhydrogel group and high titers of all IgG isotypes by the Poly I:C counterpart. Poly I:C-adjuvanted vaccination increased splenic plasma cells, terminally-differentiated memory cells (MBCs), and precursors relative to the Alhydrogel-combined immunization. Splenic B-cells from Poly I:C-vaccinated mice revealed an antibody-secreting cell- and MBC-differentiating gene expression profile. Biological processes such as antibody folding and secretion were highlighted by the Poly I:C-adjuvanted vaccination. These findings underscore the potential of Poly I:C to strengthen immune responses against Pv malaria.
Assuntos
Adjuvantes de Vacinas , Hidróxido de Alumínio , Imunogenicidade da Vacina , Vacinas Antimaláricas , Malária Vivax , Plasmodium vivax , Poli I-C , Proteínas de Protozoários , Poli I-C/administração & dosagem , Plasmodium vivax/imunologia , Imunidade Humoral , Imunidade Celular , Proteínas de Protozoários/imunologia , Vacinas Antimaláricas/química , Vacinas Antimaláricas/imunologia , Hidróxido de Alumínio/administração & dosagem , Imunoglobulina G/sangue , Masculino , Animais , Plasmócitos/imunologia , Feminino , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/imunologia , Vacinação , Adjuvantes de Vacinas/administração & dosagem , Malária Vivax/prevenção & controleRESUMO
BACKGROUND: Plasmodium vivax merozoite surface protein-1 (MSP-1) is an antigen considered to be one of the leading malaria vaccine candidates. PvMSP-1 is highly immunogenic and evidences suggest that it is target for protective immunity against asexual blood stages of malaria parasites. Thus, this study aims to evaluate the acquired cellular and antibody immune responses against PvMSP-1 in individuals naturally exposed to malaria infections in a malaria-endemic area in the north-eastern Amazon region of Brazil. METHODS: The study was carried out in Paragominas, Pará State, in the Brazilian Amazon. Blood samples were collected from 35 individuals with uncomplicated malaria. Peripheral blood mononuclear cells were isolated and the cellular proliferation and activation was analysed in presence of 19 kDa fragment of MSP-1 (PvMSP-119) and Plasmodium falciparum PSS1 crude antigen. Antibodies IgE, IgM, IgG and IgG subclass and the levels of TNF, IFN-γ and IL-10 were measured by enzyme-linked immunosorbent assay. RESULTS: The prevalence of activated CD4+ was greater than CD8+ T cells, in both ex-vivo and in 96 h culture in presence of PvMSP-119 and PSS1 antigen. A low proliferative response against PvMSP-119 and PSS1 crude antigen after 96 h culture was observed. High plasmatic levels of IFN-γ and IL-10 as well as lower TNF levels were also detected in malaria patients. However, in the 96 h supernatant culture, the dynamics of cytokine responses differed from those depicted on plasma assays; in presence of PvMSP-119 stimulus, higher levels of TNF were noted in supernatant 96 h culture of malaria patient's cells while low levels of IFN-γ and IL-10 were verified. High frequency of malaria patients presenting antibodies against PvMSP-119 was evidenced, regardless class or IgG subclass.PvMSP-119-induced antibodies were predominantly on non-cytophilic subclasses. CONCLUSIONS: The results presented here shows that PvMSP-119 was able to induce a high cellular activation, leading to production of TNF and emphasizes the high immunogenicity of PvMSP-119 in naturally exposed individuals and, therefore, its potential as a malaria vaccine candidate.
Assuntos
Anticorpos Antiprotozoários/sangue , Doenças Endêmicas , Leucócitos Mononucleares/imunologia , Malária Vivax/epidemiologia , Proteína 1 de Superfície de Merozoito/imunologia , Plasmodium vivax/imunologia , Adolescente , Adulto , Idoso , Brasil/epidemiologia , Proliferação de Células , Criança , Feminino , Humanos , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Interferon gama/metabolismo , Interleucina-10/metabolismo , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/metabolismo , Adulto JovemRESUMO
BACKGROUND: Where malaria endemicity is low, control programmes need increasingly sensitive tools for monitoring malaria transmission intensity (MTI) and to better define health priorities. A cross-sectional survey was conducted in a low endemicity area of the Peruvian north-western coast to assess the MTI using both molecular and serological tools. METHODS: Epidemiological, parasitological and serological data were collected from 2,667 individuals in three settlements of Bellavista district, in May 2010. Parasite infection was detected using microscopy and polymerase chain reaction (PCR). Antibodies to Plasmodium vivax merozoite surface protein-119 (PvMSP119) and to Plasmodium falciparum glutamate-rich protein (PfGLURP) were detected by ELISA. Risk factors for exposure to malaria (seropositivity) were assessed by multivariate survey logistic regression models. Age-specific antibody prevalence of both P. falciparum and P. vivax were analysed using a previously published catalytic conversion model based on maximum likelihood for generating seroconversion rates (SCR). RESULTS: The overall parasite prevalence by microscopy and PCR were extremely low: 0.3 and 0.9%, respectively for P. vivax, and 0 and 0.04%, respectively for P. falciparum, while seroprevalence was much higher, 13.6% for P. vivax and 9.8% for P. falciparum. Settlement, age and occupation as moto-taxi driver during previous year were significantly associated with P. falciparum exposure, while age and distance to the water drain were associated with P. vivax exposure. Likelihood ratio tests supported age seroprevalence curves with two SCR for both P. vivax and P. falciparum indicating significant changes in the MTI over time. The SCR for PfGLURP was 19-fold lower after 2002 as compared to before (λ1 = 0.022 versus λ2 = 0.431), and the SCR for PvMSP119 was four-fold higher after 2006 as compared to before (λ1 = 0.024 versus λ2 = 0.006). CONCLUSION: Combining molecular and serological tools considerably enhanced the capacity of detecting current and past exposure to malaria infections and related risks factors in this very low endemicity area. This allowed for an improved characterization of the current human reservoir of infections, largely hidden and heterogeneous, as well as providing insights into recent changes in species specific MTIs. This approach will be of key importance for evaluating and monitoring future malaria elimination strategies.
Assuntos
Malária Falciparum/transmissão , Malária Vivax/transmissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antiprotozoários/sangue , Criança , Pré-Escolar , Estudos Transversais , DNA de Protozoário/sangue , DNA de Protozoário/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Lactente , Recém-Nascido , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Masculino , Pessoa de Meia-Idade , Peru/epidemiologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Plasmodium vivax/isolamento & purificação , Reação em Cadeia da Polimerase , Adulto JovemRESUMO
BACKGROUND: ETRAMP11.2 (PVX_003565) is a well-characterized protein with antigenic potential. It is considered to be a serological marker for diagnostic tools, and it has been suggested as a potential vaccine candidate. Despite its immunological relevance, the polymorphism of the P. vivax ETRAMP11.2 gene (pvetramp11.2) remains undefined. The genetic variability of an antigen may limit the effectiveness of its application as a serological surveillance tool and in vaccine development and, therefore, the aim of this study was to investigate the genetic diversity of pvetramp11.2 in parasite populations from Amazonian regions and worldwide. We also evaluated amino acid polymorphism on predicted B-cell epitopes. The low variability of the sequence encoding PvETRAMP11.2 protein suggests that it would be a suitable marker in prospective serodiagnostic assays for surveillance strategies or in vaccine design against P. vivax malaria. METHODS: The pvetramp11.2 of P. vivax isolates collected from Brazil (n = 68) and Peru (n = 36) were sequenced and analyzed to assess nucleotide polymorphisms, allele distributions, population differentiation, genetic diversity and signature of selection. In addition, sequences (n = 104) of seven populations from different geographical regions were retrieved from the PlasmoDB database and included in the analysis to study the worldwide allele distribution. Potential linear B-cell epitopes and their polymorphisms were also explored. RESULTS: The multiple alignments of 208 pvetramp11.2 sequences revealed a low polymorphism and a marked geographical variation in allele diversity. Seven polymorphic sites and 11 alleles were identified. All of the alleles were detected in isolates from the Latin American region and five alleles were detected in isolates from the Southeast Asia/Papua New Guinea (SEA/PNG) region. Three alleles were shared by all Latin American populations (H1, H6 and H7). The H1 allele (reference allele from Salvador-1 strain), which was absent in the SEA/PNG populations, was the most represented allele in populations from Brazil (54%) and was also detected at high frequencies in populations from all other Latin America countries (range: 13.0% to 33.3%). The H2 allele was the major allele in SEA/PNG populations, but was poorly represented in Latin America populations (only in Brazil: 7.3%). Plasmodium vivax populations from Latin America showed a marked inter-population genetic differentiation (fixation index [Fst]) in contrast to SEA/PNG populations. Codon bias measures (effective number of codons [ENC] and Codon bias index [CBI]) indicated preferential use of synonymous codons, suggesting selective pressure at the translation level. Only three amino acid substitutions, located in the C-terminus, were detected. Linear B-cell epitope mapping predicted two epitopes in the Sal-1 PvETRAMP11.2 protein, one of which was fully conserved in all of the parasite populations analyzed. CONCLUSIONS: We provide an overview of the allele distribution and genetic differentiation of ETRAMP11.2 antigen in P. vivax populations from different endemic areas of the world. The reduced polymorphism and the high degree of protein conservation supports the application of PvETRAMP11.2 protein as a reliable antigen for application in serological assays or vaccine design. Our findings provide useful information that can be used to inform future study designs.
Assuntos
Malária Vivax , Plasmodium vivax , Humanos , Antígenos de Protozoários/genética , Epitopos de Linfócito B/genética , Variação Genética , Malária Vivax/parasitologia , Proteínas de Membrana/genética , Estudos Prospectivos , Proteínas de Protozoários/genética , Análise de Sequência de DNARESUMO
OBJECTIVE: To investigate risk factors associated with the acquisition of antibodies against Plasmodium vivax Duffy binding protein (PvDBP) - a leading malaria vaccine candidate - in a well-consolidated agricultural settlement of the Brazilian Amazon Region and to determine the sequence diversity of the PvDBP ligand domain (DBP(II)) within the local malaria parasite population. METHODS: Demographic, epidemiological and clinical data were collected from 541 volunteers using a structured questionnaire. Malaria parasites were detected by conventional microscopy and PCR, and blood collection was used for antibody assays and molecular characterisation of DBP(II). RESULTS: The frequency of malaria infection was 7% (6% for P. vivax and 1% for P. falciparum), with malaria cases clustered near mosquito breeding sites. Nearly 50% of settlers had anti-PvDBP IgG antibodies, as detected by enzyme-linked immunosorbent assay (ELISA) with subject's age being the only strong predictor of seropositivity to PvDBP. Unexpectedly, low levels of DBP(II) diversity were found within the local malaria parasites, suggesting the existence of low gene flow between P. vivax populations, probably due to the relative isolation of the studied settlement. CONCLUSION: The recognition of PvDBP by a significant proportion of the community, associated with low levels of DBP(II) diversity among local P. vivax, reinforces the variety of malaria transmission patterns in communities from frontier settlements. Such studies should provide baseline information for antimalarial vaccines now in development.
Assuntos
Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Indígenas Sul-Americanos , Plasmodium vivax/genética , Plasmodium vivax/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Adolescente , Adulto , Fatores Etários , Anticorpos Antiprotozoários/imunologia , Brasil/epidemiologia , Criança , Estudos Transversais , DNA de Protozoário , Ensaio de Imunoadsorção Enzimática , Feminino , Variação Genética , Humanos , Malária Vivax/sangue , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Masculino , Polimorfismo Genético , Prevalência , Fatores de Risco , Análise de Sequência de DNA , Fatores Socioeconômicos , Adulto JovemRESUMO
BACKGROUND: In Cambodia, malaria transmission is low and most cases occur in forested areas. Sero-epidemiological techniques can be used to identify both areas of ongoing transmission and high-risk groups to be targeted by control interventions. This study utilizes repeated cross-sectional data to assess the risk of being malaria sero-positive at two consecutive time points during the rainy season and investigates who is most likely to sero-convert over the transmission season. METHODS: In 2005, two cross-sectional surveys, one in the middle and the other at the end of the malaria transmission season, were carried out in two ecologically distinct regions in Cambodia. Parasitological and serological data were collected in four districts. Antibodies to Plasmodium falciparum Glutamate Rich Protein (GLURP) and Plasmodium vivax Merozoite Surface Protein-1(19) (MSP-1(19)) were detected using Enzyme Linked Immunosorbent Assay (ELISA). The force of infection was estimated using a simple catalytic model fitted using maximum likelihood methods. Risks for sero-converting during the rainy season were analysed using the Classification and Regression Tree (CART) method. RESULTS: A total of 804 individuals participating in both surveys were analysed. The overall parasite prevalence was low (4.6% and 2.0% for P. falciparum and 7.9% and 6.0% for P. vivax in August and November respectively). P. falciparum force of infection was higher in the eastern region and increased between August and November, whilst P. vivax force of infection was higher in the western region and remained similar in both surveys. In the western region, malaria transmission changed very little across the season (for both species). CART analysis for P. falciparum in the east highlighted age, ethnicity, village of residence and forest work as important predictors for malaria exposure during the rainy season. Adults were more likely to increase their antibody responses to P. falciparum during the transmission season than children, whilst members of the Charay ethnic group demonstrated the largest increases. DISCUSSION: In areas of low transmission intensity, such as in Cambodia, the analysis of longitudinal serological data enables a sensitive evaluation of transmission dynamics. Consecutive serological surveys allow an insight into spatio-temporal patterns of malaria transmission. The use of CART enabled multiple interactions to be accounted for simultaneously and permitted risk factors for exposure to be clearly identified.
Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Antiprotozoários/sangue , Camboja/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Fatores de Risco , Estações do Ano , Estudos Soroepidemiológicos , Adulto JovemRESUMO
BACKGROUND: Relatively few Amazonian infants have clinical malaria diagnosed, treated and notified before their first birthday, either because they are little exposed to an infection or remain asymptomatic once infected. Here we measure the proportion of children who have experienced Plasmodium vivax infection and malaria by 2 years of age in the main transmission hotspot of Amazonian Brazil. METHODS: We measured IgG antibodies to 3 blood-stage P. vivax antigens at the 1- and 2-year follow-up assessment of 435 participants in a population-based birth cohort. Children's malaria case notifications were retrieved from the electronic database of the Ministry of Health. We used multiple Poisson regression models to identify predictors of serologically proven P. vivax infection and clinical vivax malaria during the first 2 years of life. RESULTS: Overall, 23 [5.3%; 95% confidence interval (CI): 3.5-7.8%) children had antibodies to ≥2 antigens detected during at least one follow-up assessment, consistent with past P. vivax infection(s). Fifteen (3.4%; 95% CI: 2.1-5.6%) children had clinical vivax episodes notified during the first 2 years of life; 7 of them were seronegative. We estimate that half of the infections remained unnotified. Children born to women who experienced P. vivax infection during pregnancy were more likely to be infected and develop clinical vivax malaria, while those breast-fed for ≥12 months had their risk of being P. vivax -seropositive (which we take as evidence of blood-stage P. vivax infection during the first 2 years of life) decreased by 79.8% (95% CI: 69.3-86.7%). CONCLUSION: P. vivax infections in early childhood are underreported in the Amazon, are associated with anemia at 2 years of age, and appear to be partially prevented by prolonged breastfeeding.
Assuntos
Malária Falciparum , Malária Vivax , Malária , Coorte de Nascimento , Aleitamento Materno , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Imunoglobulina G , Lactente , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Plasmodium falciparum , Plasmodium vivax , GravidezRESUMO
Adjuvants are essential for vaccine development, especially subunit-based vaccines such as those containing recombinant proteins. Increasing the knowledge of the immune response mechanisms generated by adjuvants should facilitate the formulation of vaccines in the future. The present work describes the immune phenotypes induced by Poly (I:C) and Montanide ISA 720 in the context of mice immunization with a recombinant protein based on the Plasmodium vivax circumsporozoite protein (PvCSP) sequence. Mice immunized with the recombinant protein plus Montanide ISA 720 showed an overall more robust humoral response, inducing antibodies with greater avidity to the antigen. A general trend for mixed Th1/Th2 inflammatory cytokine profile was increased in Montanide-adjuvanted mice, while a balanced profile was observed in Poly (I:C)-adjuvanted mice. Montanide ISA 720 induced a gene signature in B lymphocytes characteristic of heme biosynthesis, suggesting increased differentiation to Plasma Cells. On the other hand, Poly (I:C) provoked more perturbations in T cell transcriptome. These results extend the understanding of the modulation of specific immune responses induced by different classes of adjuvants, and could support the optimization of subunit-based vaccines.
Assuntos
Adjuvantes Imunológicos , Anticorpos Antiprotozoários , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Animais , Sistema Imunitário , Imunidade , Camundongos , Óleo Mineral , Poli I-C , Proteínas RecombinantesRESUMO
BACKGROUND: The simultaneous infection of Plasmodium falciparum and Epstein-Barr virus (EBV) could promote the development of the aggressive endemic Burkitt's Lymphoma (eBL) in children living in P. falciparum holoendemic areas. While it is well-established that eBL is not related to other human malaria parasites, the impact of EBV infection on the generation of human malaria immunity remains largely unexplored. Considering that this highly prevalent herpesvirus establishes a lifelong persistent infection on B-cells with possible influence on malaria immunity, we hypothesized that EBV co-infection could have impact on the naturally acquired antibody responses to P. vivax, the most widespread human malaria parasite. METHODOLOGY/PRINCIPAL FINDINGS: The study design involved three cross-sectional surveys at six-month intervals (baseline, 6 and 12 months) among long-term P. vivax exposed individuals living in the Amazon rainforest. The approach focused on a group of malaria-exposed individuals whose EBV-DNA (amplification of balf-5 gene) was persistently detected in the peripheral blood (PersVDNA, n = 27), and an age-matched malaria-exposed group whose EBV-DNA could never be detected during the follow-up (NegVDNA, n = 29). During the follow-up period, the serological detection of EBV antibodies to lytic/ latent viral antigens showed that IgG antibodies to viral capsid antigen (VCA-p18) were significantly different between groups (PersVDNA > NegVDNA). A panel of blood-stage P. vivax antigens covering a wide range of immunogenicity confirmed that in general PersVDNA group showed low levels of antibodies as compared with NegVDNA. Interestingly, more significant differences were observed to a novel DBPII immunogen, named DEKnull-2, which has been associated with long-term neutralizing antibody response. Differences between groups were less pronounced with blood-stage antigens (such as MSP1-19) whose levels can fluctuate according to malaria transmission. CONCLUSIONS/SIGNIFICANCE: In a proof-of-concept study we provide evidence that a persistent detection of EBV-DNA in peripheral blood of adults in a P. vivax semi-immune population may impact the long-term immune response to major malaria vaccine candidates.
Assuntos
Linfoma de Burkitt , Coinfecção , Infecções por Vírus Epstein-Barr , Malária Falciparum , Malária Vivax , Malária , Adulto , Anticorpos Antiprotozoários , Formação de Anticorpos , Antígenos Virais , Linfoma de Burkitt/complicações , Linfoma de Burkitt/parasitologia , Criança , Coinfecção/complicações , Estudos Transversais , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4/genética , Humanos , Malária/complicações , Malária Falciparum/parasitologia , Plasmodium vivaxRESUMO
Plasmodium vivax blood-stage invasion into reticulocyte is critical for parasite development. Thus, validation of novel parasite invasion ligands is essential for malaria vaccine development. Recently, we demonstrated that EBP2, a Duffy binding protein (DBP) paralog, is antigenically distinct from DBP and could not be functionally inhibited by anti-DBP antibodies. Here, we took advantage of a small outbreak of P.vivax malaria, located in a non-malarious area of Brazil, to investigate for the first time IgM/IgG antibodies against EBP2 and DEKnull-2 (an engineering DBPII vaccine) among individuals who had their first and brief exposure to P.vivax (16 cases and 22 non-cases). Our experimental approach included 4 cross sectional surveys at 3-month interval (12-month follow-up). The results demonstrated that while a brief initial P.vivax infection was not efficient to induce IgM/ IgG antibodies to either EBP2 or DEKnull-2, IgG antibodies against DEKnull-2 (but not EBP2) were boosted by recurrent blood-stage infections following treatment. Of interest, in most recurrent P. vivax infections (4 out of 6 patients) DEKnull-2 IgG antibodies were sustained for 6 to 12 months. Polymorphisms in the ebp2 gene does not seem to explain EBP2 low immunogenicity as the ebp2 allele associated with the P.vivax outbreak presented high identity to the original EBP2 isolate used as recombinant protein. Although EBP2 antibodies were barely detectable after a primary episode of P.vivax infection, EBP2 was highly recognized by serum IgG from long-term malaria-exposed Amazonians (range from 35 to 92% according to previous malaria episodes). Taken together, the results showed that individuals with a single and brief exposure to P.vivax infection develop very low anti-EBP2 antibodies, which tend to increase after long-term malaria exposure. Finally, the findings highlighted the potential of DEKnull-2 as a vaccine candidate, as in non-immune individuals anti-DEKnull-2 IgG antibodies were boosted even after a brief exposure to P.vivax blood stages.
Assuntos
Malária Vivax , Malária , Anticorpos Antiprotozoários , Formação de Anticorpos , Antígenos de Protozoários/genética , Estudos Transversais , Humanos , Imunoglobulina G , Imunoglobulina M , Malária Vivax/parasitologia , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genéticaRESUMO
Apical membrane antigen 1 (AMA-1) is an invasion-related Plasmodium antigen that is expressed during both intracellular and extracellular asexual stages of the parasite's life cycle, making it an ideal target for induction of humoral and cellular immune responses that can protect against malaria. We show here that when it is administered as a recombinant protein (P) in Montanide ISA720 adjuvant, followed by a recombinant human type 5 adenovirus (Ad), intense and long-lasting Plasmodium vivax AMA-1-specific antibody responses (including both IgG1 and IgG2a), as well as proliferative memory T cell responses, can be detected in immunized mice. Memory T cells displayed both central (CD44(hi) CD62L(hi)) and effector (CD44(hi) CD62L(lo)) phenotypes, with the central memory phenotype prevailing (56% of AMA-1-specific proliferating cells). Considering the main traits of the memory immune responses induced against AMA-1, this particular sequence of immunogens (P followed by Ad), but no others (Ad/Ad, Ad/P, or P/P), displayed an optimal synergistic effect. These results give further support to the need for preclinical studies of P. vivax vaccine candidate AMA-1 administered in prime/boost protocols that include recombinant proteins and adenoviral vectors.
Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Plasmodium vivax/imunologia , Adenoviridae , Adjuvantes Imunológicos , Animais , Anticorpos Antiprotozoários/biossíntese , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Feminino , Receptores de Hialuronatos/biossíntese , Imunidade Celular , Imunidade Humoral , Imunização , Imunização Secundária , Memória Imunológica , Selectina L/biossíntese , Vacinas Antimaláricas/administração & dosagem , Malária Vivax/imunologia , Malária Vivax/prevenção & controle , Manitol/administração & dosagem , Manitol/análogos & derivados , Manitol/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ácidos Oleicos/administração & dosagem , Ácidos Oleicos/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia , Vacinas Sintéticas/imunologiaRESUMO
BACKGROUND: Plasmodium falciparum and Plasmodium vivax are responsible for most of the global burden of malaria. Although the accentuated pathogenicity of P. falciparum occurs because of sequestration of the mature erythrocytic forms in the microvasculature, this phenomenon has not yet been noted in P. vivax. The increasing number of severe manifestations of P. vivax infections, similar to those observed for severe falciparum malaria, suggests that key pathogenic mechanisms (eg, cytoadherence) might be shared by the 2 parasites. METHODS: Mature P. vivax-infected erythrocytes (Pv-iEs) were isolated from blood samples collected from 34 infected patients. Pv-iEs enriched on Percoll gradients were used in cytoadhesion assays with human lung endothelial cells, Saimiri brain endothelial cells, and placental cryosections. RESULTS: Pv-iEs were able to cytoadhere under static and flow conditions to cells expressing endothelial receptors known to mediate the cytoadhesion of P. falciparum. Although Pv-iE cytoadhesion levels were 10-fold lower than those observed for P. falciparum-infected erythrocytes, the strength of the interaction was similar. Cytoadhesion of Pv-iEs was in part mediated by VIR proteins, encoded by P. vivax variant genes (vir), given that specific antisera inhibited the Pv-iE-endothelial cell interaction. CONCLUSIONS: These observations prompt a modification of the current paradigms of the pathogenesis of malaria and clear the way to investigate the pathophysiology of P. vivax infections.