Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38112206

RESUMO

Placental development involves coordinated expansion and differentiation of trophoblast cell lineages possessing specialized functions. Among the differentiated trophoblast cell lineages are invasive trophoblast cells, which exit the placenta and invade the uterus, where they restructure the uterine parenchyma and facilitate remodeling of uterine spiral arteries. The rat exhibits deep intrauterine trophoblast cell invasion, a feature shared with human placentation, and is also amenable to gene manipulation using genome-editing techniques. In this investigation, we generated a conditional rat model targeting the invasive trophoblast cell lineage. Prolactin family 7, subfamily b, member 1 (Prl7b1) is uniquely and abundantly expressed in the rat invasive trophoblast cell lineage. Disruption of Prl7b1 did not adversely affect placental development. We demonstrated that the Prl7b1 locus could be effectively used to drive the expression of Cre recombinase in invasive trophoblast cells. Our rat model represents a new tool for investigating candidate genes contributing to the regulation of invasive trophoblast cells and their roles in trophoblast-guided uterine spiral artery remodeling.


Assuntos
Placenta , Placentação , Gravidez , Ratos , Feminino , Animais , Humanos , Placenta/metabolismo , Placentação/genética , Trofoblastos , Útero , Linhagem da Célula/genética , Modelos Animais
2.
Development ; 150(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37417811

RESUMO

The invasive trophoblast cell lineages in rat and human share crucial responsibilities in establishing the uterine-placental interface of the hemochorial placenta. These observations have led to the rat becoming an especially useful animal model for studying hemochorial placentation. However, our understanding of similarities or differences between regulatory mechanisms governing rat and human invasive trophoblast cell populations is limited. In this study, we generated single-nucleus ATAC-seq data from gestation day 15.5 and 19.5 rat uterine-placental interface tissues, and integrated the data with single-cell RNA-seq data generated at the same stages. We determined the chromatin accessibility profiles of invasive trophoblast, natural killer, macrophage, endothelial and smooth muscle cells, and compared invasive trophoblast chromatin accessibility with extravillous trophoblast cell accessibility. In comparing chromatin accessibility profiles between species, we found similarities in patterns of gene regulation and groups of motifs enriched in accessible regions. Finally, we identified a conserved gene regulatory network in invasive trophoblast cells. Our data, findings and analysis will facilitate future studies investigating regulatory mechanisms essential for the invasive trophoblast cell lineage.


Assuntos
Redes Reguladoras de Genes , Trofoblastos , Animais , Gravidez , Ratos , Núcleo Celular , Cromatina , Placenta/citologia , Análise da Expressão Gênica de Célula Única , Fatores de Transcrição/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Útero/citologia , Feminino
3.
Development ; 150(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36607602

RESUMO

Hemochorial placentation involves the differentiation of invasive trophoblast cells, specialized cells that possess the capacity to exit the placenta and invade into the uterus where they restructure the vasculature. Invasive trophoblast cells arise from a well-defined compartment within the placenta, referred to as the junctional zone in rat and the extravillous trophoblast cell column in human. In this study, we investigated roles for AKT1, a serine/threonine kinase, in placental development using a genome-edited/loss-of-function rat model. Disruption of AKT1 resulted in placental, fetal and postnatal growth restriction. Forkhead box O4 (Foxo4), which encodes a transcription factor and known AKT substrate, was abundantly expressed in the junctional zone and in invasive trophoblast cells of the rat placentation site. Foxo4 gene disruption using genome editing resulted in placentomegaly, including an enlarged junctional zone. AKT1 and FOXO4 regulate the expression of many of the same transcripts expressed by trophoblast cells, but in opposite directions. In summary, we have identified AKT1 and FOXO4 as part of a regulatory network that reciprocally controls critical indices of hemochorial placenta development.


Assuntos
Placenta , Placentação , Animais , Feminino , Gravidez , Ratos , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Placenta/metabolismo , Placentação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trofoblastos , Útero
4.
Bioessays ; : e2300118, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922923

RESUMO

The biology of trophoblast cell lineage development and placentation is characterized by the involvement of several known transcription factors. Central to the action of a subset of these transcriptional regulators is CBP-p300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). CITED2 acts as a coregulator modulating transcription factor activities and affecting placental development and adaptations to physiological stressors. These actions of CITED2 on the trophoblast cell lineage and placentation are conserved across the mouse, rat, and human. Thus, aspects of CITED2 biology in hemochorial placentation can be effectively modeled in the mouse and rat. In this review, we present information on the conserved role of CITED2 in the biology of placentation and discuss the use of CITED2 as a tool to discover new insights into regulatory mechanisms controlling placental development.

5.
Proc Natl Acad Sci U S A ; 120(3): e2213622120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626551

RESUMO

Establishment of the hemochorial uterine-placental interface requires exodus of trophoblast cells from the placenta and their transformative actions on the uterus, which represent processes critical for a successful pregnancy, but are poorly understood. We examined the involvement of CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2) in rat and human trophoblast cell development. The rat and human exhibit deep hemochorial placentation. CITED2 was distinctively expressed in the junctional zone (JZ) and invasive trophoblast cells of the rat. Homozygous Cited2 gene deletion resulted in placental and fetal growth restriction. Small Cited2 null placentas were characterized by disruptions in the JZ, delays in intrauterine trophoblast cell invasion, and compromised plasticity. In the human placentation site, CITED2 was uniquely expressed in the extravillous trophoblast (EVT) cell column and importantly contributed to the development of the EVT cell lineage. We conclude that CITED2 is a conserved regulator of deep hemochorial placentation.


Assuntos
Placenta , Placentação , Proteínas Repressoras , Transativadores , Animais , Feminino , Humanos , Gravidez , Ratos , Placentação/genética , Proteínas Repressoras/genética , Transativadores/genética , Trofoblastos , Útero
6.
FASEB J ; 38(1): e23376, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38112167

RESUMO

Male germ cell development is dependent on the orchestrated regulation of gene networks. TATA-box binding protein associated factors (TAFs) facilitate interactions of TATA-binding protein with the TATA element, which is known to coordinate gene transcription during organogenesis. TAF7 like (Taf7l) is situated on the X chromosome and has been implicated in testis development. We examined the biology of TAF7L in testis development using the rat. Taf7l was prominently expressed in preleptotene to leptotene spermatocytes. To study the impact of TAF7L on the testis we generated a global loss-of-function rat model using CRISPR/Cas9 genome editing. Exon 3 of the Taf7l gene was targeted. A founder was generated possessing a 110 bp deletion within the Taf7l locus, which resulted in a frameshift and the premature appearance of a stop codon. The mutation was effectively transmitted through the germline. Deficits in TAF7L did not adversely affect pregnancy or postnatal survival. However, the Taf7l disruption resulted in male infertility due to compromised testis development and failed sperm production. Mutant germ cells suffer meiotic arrest at late zygotene/early pachynema stages, with defects in sex body formation. This testis phenotype was more pronounced than previously described for the subfertile Taf7l null mouse. We conclude that TAF7L is essential for male germ cell development in the rat.


Assuntos
Sêmen , Espermatogênese , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIID , Animais , Feminino , Masculino , Gravidez , Ratos , Diferenciação Celular , Meiose , Sêmen/metabolismo , Espermatócitos/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Testículo/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo
7.
Nature ; 571(7766): 505-509, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31243369

RESUMO

The evolution of gene expression in mammalian organ development remains largely uncharacterized. Here we report the transcriptomes of seven organs (cerebrum, cerebellum, heart, kidney, liver, ovary and testis) across developmental time points from early organogenesis to adulthood for human, rhesus macaque, mouse, rat, rabbit, opossum and chicken. Comparisons of gene expression patterns identified correspondences of developmental stages across species, and differences in the timing of key events during the development of the gonads. We found that the breadth of gene expression and the extent of purifying selection gradually decrease during development, whereas the amount of positive selection and expression of new genes increase. We identified differences in the temporal trajectories of expression of individual genes across species, with brain tissues showing the smallest percentage of trajectory changes, and the liver and testis showing the largest. Our work provides a resource of developmental transcriptomes of seven organs across seven species, and comparative analyses that characterize the development and evolution of mammalian organs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Organogênese/genética , Transcriptoma/genética , Animais , Evolução Biológica , Galinhas/genética , Feminino , Humanos , Macaca mulatta/genética , Masculino , Camundongos , Gambás/genética , Coelhos , Ratos
8.
Proc Natl Acad Sci U S A ; 119(41): e2210633119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191208

RESUMO

The hemochorial placentation site is characterized by a dynamic interplay between trophoblast cells and maternal cells. These cells cooperate to establish an interface required for nutrient delivery to promote fetal growth. In the human, trophoblast cells penetrate deep into the uterus. This is not a consistent feature of hemochorial placentation and has hindered the establishment of suitable animal models. The rat represents an intriguing model for investigating hemochorial placentation with deep trophoblast cell invasion. In this study, we used single-cell RNA sequencing to characterize the transcriptome of the invasive trophoblast cell lineage, as well as other cell populations within the rat uterine-placental interface during early (gestation day [gd] 15.5) and late (gd 19.5) stages of intrauterine trophoblast cell invasion. We identified a robust set of transcripts that define invasive trophoblast cells, as well as transcripts that distinguished endothelial, smooth muscle, natural killer, and macrophage cells. Invasive trophoblast, immune, and endothelial cell populations exhibited distinct spatial relationships within the uterine-placental interface. Furthermore, the maturation stage of invasive trophoblast cell development could be determined by assessing gestation stage-dependent changes in transcript expression. Finally, and most importantly, expression of a prominent subset of rat invasive trophoblast cell transcripts is conserved in the invasive extravillous trophoblast cell lineage of the human placenta. These findings provide foundational data to identify and interrogate key conserved regulatory mechanisms essential for the development and function of an important compartment within the hemochorial placentation site that is essential for a healthy pregnancy.


Assuntos
Placenta , Placentação , Animais , Linhagem da Célula , Feminino , Humanos , Placenta/metabolismo , Gravidez , Ratos , Trofoblastos/metabolismo , Útero
9.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876522

RESUMO

Hemochorial placentation is characterized by the development of trophoblast cells specialized to interact with the uterine vascular bed. We utilized trophoblast stem (TS) cell and mutant rat models to investigate regulatory mechanisms controlling trophoblast cell development. TS cell differentiation was characterized by acquisition of transcript signatures indicative of an endothelial cell-like phenotype, which was highlighted by the expression of anticoagulation factors including tissue factor pathway inhibitor (TFPI). TFPI localized to invasive endovascular trophoblast cells of the rat placentation site. Disruption of TFPI in rat TS cells interfered with development of the endothelial cell-like endovascular trophoblast cell phenotype. Similarly, TFPI was expressed in human invasive/extravillous trophoblast (EVT) cells situated within first-trimester human placental tissues and following differentiation of human TS cells. TFPI was required for human TS cell differentiation to EVT cells. We next investigated the physiological relevance of TFPI at the placentation site. Genome-edited global TFPI loss-of-function rat models revealed critical roles for TFPI in embryonic development, resulting in homogeneous midgestation lethality prohibiting analysis of the role of TFPI as a regulator of the late-gestation wave of intrauterine trophoblast cell invasion. In vivo trophoblast-specific TFPI knockdown was compatible with pregnancy but had profound effects at the uterine-placental interface, including restriction of the depth of intrauterine trophoblast cell invasion while leading to the accumulation of natural killer cells and increased fibrin deposition. Collectively, the experimentation implicates TFPI as a conserved regulator of invasive/EVT cell development, uterine spiral artery remodeling, and hemostasis at the maternal-fetal interface.


Assuntos
Lipoproteínas/metabolismo , Placentação/fisiologia , Células-Tronco/fisiologia , Trofoblastos/fisiologia , Animais , Sistemas CRISPR-Cas , Células Endoteliais/fisiologia , Feminino , Edição de Genes , Humanos , Lipoproteínas/genética , Mutação , Placenta/metabolismo , Gravidez , Interferência de RNA , Ratos , Ratos Sprague-Dawley
10.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649217

RESUMO

Invasive trophoblast cells are critical to spiral artery remodeling in hemochorial placentation. Insufficient trophoblast cell invasion and vascular remodeling can lead to pregnancy disorders including preeclampsia, preterm birth, and intrauterine growth restriction. Previous studies in mice identified achaete-scute homolog 2 (ASCL2) as essential to extraembryonic development. We hypothesized that ASCL2 is a critical and conserved regulator of invasive trophoblast cell lineage development. In contrast to the mouse, the rat possesses deep intrauterine trophoblast cell invasion and spiral artery remodeling similar to human placentation. In this study, we investigated invasive/extravillous trophoblast (EVT) cell differentiation using human trophoblast stem (TS) cells and a loss-of-function mutant Ascl2 rat model. ASCL2 transcripts are expressed in the EVT column and junctional zone, which represent tissue sources of invasive trophoblast progenitor cells within human and rat placentation sites, respectively. Differentiation of human TS cells into EVT cells resulted in significant up-regulation of ASCL2 and several other transcripts indicative of EVT cell differentiation. Disruption of ASCL2 impaired EVT cell differentiation, as indicated by cell morphology and transcript profiles. RNA sequencing analysis of ASCL2-deficient trophoblast cells identified both down-regulation of EVT cell-associated transcripts and up-regulation of syncytiotrophoblast-associated transcripts, indicative of dual activating and repressing functions. ASCL2 deficiency in the rat impacted placental morphogenesis, resulting in junctional zone dysgenesis and failed intrauterine trophoblast cell invasion. ASCL2 acts as a critical and conserved regulator of invasive trophoblast cell lineage development and a modulator of the syncytiotrophoblast lineage.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula/fisiologia , Placentação/fisiologia , Gravidez/metabolismo , Trofoblastos/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo
11.
FASEB J ; 35(2): e21272, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33423320

RESUMO

Interleukin 33 (IL33) signaling has been implicated in the establishment and maintenance of pregnancy and in pregnancy disorders. The goal of this project was to evaluate the role of IL33 signaling in rat pregnancy. The rat possesses hemochorial placentation with deep intrauterine trophoblast invasion; features also characteristic of human placentation. We generated and characterized a germline mutant rat model for IL33 using CRISPR/Cas9 genome editing. IL33 deficient rats exhibited deficits in lung responses to an inflammatory stimulus (Sephadex G-200) and to estrogen-induced uterine eosinophilia. Female rats deficient in IL33 were fertile and exhibited pregnancy outcomes (gestation length and litter size) similar to wild-type rats. Placental weight was adversely affected by the disruption of IL33 signaling. A difference in pregnancy-dependent adaptations to lipopolysaccharide (LPS) exposure was observed between wild-type and IL33 deficient pregnancies. Pregnancy in wild-type rats treated with LPS did not differ significantly from pregnancy in vehicle-treated wild-type rats. In contrast, LPS treatment decreased fetal survival rate, fetal and placental weights, and increased fetal growth restriction in IL33 deficient rats. In summary, a new rat model for investigating IL33 signaling has been established. IL33 signaling participates in the regulation of placental development and protection against LPS-induced fetal and placental growth restriction.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Interleucina-33/metabolismo , Doenças Placentárias/metabolismo , Complicações Infecciosas na Gravidez/metabolismo , Transdução de Sinais , Animais , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/patologia , Interleucina-33/genética , Lipopolissacarídeos/toxicidade , Mutação , Doenças Placentárias/etiologia , Doenças Placentárias/patologia , Gravidez , Complicações Infecciosas na Gravidez/etiologia , Complicações Infecciosas na Gravidez/patologia , Resultado da Gravidez , Ratos , Ratos Sprague-Dawley
12.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35328368

RESUMO

The rat possesses hemochorial placentation with deep intrauterine trophoblast cell invasion and trophoblast-guided uterine spiral artery remodeling, which resembles human placentation. Uterine spiral arteries are extensively remodeled to deliver sufficient supply of maternal blood and nutrients to the developing fetus. Inadequacies in these key processes negatively impact fetal growth and development. Recent innovations in genome editing combined with effective phenotyping strategies have provided new insights into placental development. Application of these research approaches has highlighted both conserved and species-specific features of hemochorial placentation. The review provides foundational information on rat hemochorial placental development and function during physiological and pathological states, especially as related to the invasive trophoblast cell-guided transformation of uterine spiral arteries. Our goal is to showcase the utility of the rat as a model for in vivo mechanistic investigations targeting regulatory events within the uterine-placental interface.


Assuntos
Placenta , Trofoblastos , Animais , Feminino , Placenta/irrigação sanguínea , Placentação/fisiologia , Gravidez , Ratos , Trofoblastos/fisiologia , Artéria Uterina , Útero/irrigação sanguínea
13.
Gastroenterology ; 158(5): 1433-1449.e27, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31786131

RESUMO

BACKGROUND & AIMS: Prolactin (PRL) signaling is up-regulated in hormone-responsive cancers. The PRL receptor (PRLR) is a class I cytokine receptor that signals via the Janus kinase (JAK)-signal transducer and activator of transcription and mitogen-activated protein kinase pathways to regulate cell proliferation, migration, stem cell features, and apoptosis. Patients with pancreatic ductal adenocarcinoma (PDAC) have high plasma levels of PRL. We investigated whether PRLR signaling contributes to the growth of pancreatic tumors in mice. METHODS: We used immunohistochemical analyses to compare levels of PRL and PRLR in multitumor tissue microarrays. We used structure-based virtual screening and fragment-based drug discovery to identify compounds likely to bind PRLR and interfere with its signaling. Human pancreatic cell lines (AsPC-1, BxPC-3, Panc-1, and MiaPaCa-2), with or without knockdown of PRLR (clustered regularly interspaced short palindromic repeats or small hairpin RNA), were incubated with PRL or penfluridol and analyzed in proliferation and spheroid formation. C57BL/6 mice were given injections of UNKC-6141 cells, with or without knockdown of PRLR, into pancreas, and tumor development was monitored for 4 weeks, with some mice receiving penfluridol treatment for 21 days. Human pancreatic tumor tissues were implanted into interscapular fat pads of NSG mice, and mice were given injections of penfluridol daily for 28 days. Nude mice were given injections of Panc-1 cells, xenograft tumors were grown for 2 weeks, and mice were then given intraperitoneal penfluridol for 35 days. Tumors were collected from mice and analyzed by histology, immunohistochemistry, and immunoblots. RESULTS: Levels of PRLR were increased in PDAC compared with nontumor pancreatic tissues. Incubation of pancreatic cell lines with PRL activated signaling via JAK2-signal transducer and activator of transcription 3 and extracellular signal-regulated kinase, as well as formation of pancospheres and cell migration; these activities were not observed in cells with PRLR knockdown. Pancreatic cancer cells with PRLR knockdown formed significantly smaller tumors in mice. We identified several diphenylbutylpiperidine-class antipsychotic drugs as agents that decreased PRL-induced JAK2 signaling; incubation of pancreatic cancer cells with these compounds reduced their proliferation and formation of panco spheres. Injections of 1 of these compounds, penfluridol, slowed the growth of xenograft tumors in the different mouse models, reducing proliferation and inducing autophagy of the tumor cells. CONCLUSIONS: Levels of PRLR are increased in PDAC, and exposure to PRL increases proliferation and migration of pancreatic cancer cells. Antipsychotic drugs, such as penfluridol, block PRL signaling in pancreatic cancer cells to reduce their proliferation, induce autophagy, and slow the growth of xenograft tumors in mice. These drugs might be tested in patients with PDAC.


Assuntos
Antipsicóticos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Penfluridol/farmacologia , Prolactina/metabolismo , Receptores da Prolactina/antagonistas & inibidores , Animais , Antipsicóticos/uso terapêutico , Autofagia/efeitos dos fármacos , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Técnicas de Silenciamento de Genes , Humanos , Injeções Intraperitoneais , Janus Quinase 2/metabolismo , Masculino , Camundongos , Pâncreas/patologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Penfluridol/uso terapêutico , Prolactina/sangue , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Toxicol Appl Pharmacol ; 426: 115639, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34256052

RESUMO

Polychlorinated biphenyls (PCBs) are endocrine disrupting chemicals with documented, though mechanistically ill-defined, reproductive toxicity. The toxicity of dioxin-like PCBs, such as PCB126, is mediated via the aryl hydrocarbon receptor (AHR) in non-ovarian tissues. The goal of this study was to examine the uterine and ovarian effects of PCB126 and test the hypothesis that the AHR is required for PCB126-induced reproductive toxicity. Female Holzman-Sprague Dawley wild type (n = 14; WT) and Ahr knock out (n = 11; AHR-/-) rats received a single intraperitoneal injection of either corn oil vehicle (5 ml/kg: WT_O and AHR-/-_O) or PCB126 (1.63 mg/kg in corn oil: WT_PCB and AHR-/-_PCB) at four weeks of age. The estrous cycle was synchronized and ovary and uterus were collected 28 days after exposure. In WT rats, PCB126 exposure reduced (P < 0.05) body and ovary weight, uterine gland number, uterine area, progesterone, 17ß-estradiol and anti-Müllerian hormone level, secondary and antral follicle and corpora lutea number but follicle stimulating hormone level increased (P < 0.05). In AHR-/- rats, PCB126 exposure increased (P ≤ 0.05) circulating luteinizing hormone level. Ovarian or uterine mRNA abundance of biotransformation, and inflammation genes were altered (P < 0.05) in WT rats due to PCB126 exposure. In AHR-/- rats, the transcriptional effects of PCB126 were restricted to reductions (P < 0.05) in three inflammatory genes. These findings support a functional role for AHR in the female reproductive tract, illustrate AHR's requirement in PCB126-induced reprotoxicity, and highlight the potential risk of dioxin-like compounds on female reproduction.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Disruptores Endócrinos/toxicidade , Bifenilos Policlorados/toxicidade , Receptores de Hidrocarboneto Arílico/deficiência , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biotransformação/genética , Peso Corporal/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônios/sangue , Tamanho do Órgão/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Ovário/patologia , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Ratos Transgênicos , Receptores de Hidrocarboneto Arílico/genética , Reprodução/efeitos dos fármacos , Útero/efeitos dos fármacos , Útero/metabolismo , Útero/patologia
15.
Proc Natl Acad Sci U S A ; 113(15): 4212-7, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035990

RESUMO

The progesterone receptor (PGR) is a ligand-activated transcription factor with key roles in the regulation of female fertility. Much has been learned of the actions of PGR signaling through the use of pharmacologic inhibitors and genetic manipulation, using mouse mutagenesis. Characterization of rats with a null mutation at the Pgr locus has forced a reexamination of the role of progesterone in the regulation of the female reproductive cycle. We generated two Pgr mutant rat models, using genome editing. In both cases, deletions yielded a null mutation resulting from a nonsense frame-shift and the emergence of a stop codon. Similar to Pgr null mice, Pgr null rats were infertile because of deficits in sexual behavior, ovulation, and uterine endometrial differentiation. However, in contrast to the reported phenotype of female mice with disruptions in Pgr signaling, Pgr null female rats exhibit robust estrous cycles. Cyclic changes in vaginal cytology, uterine histology, serum hormone levels, and wheel running activity were evident in Pgr null female rats, similar to wild-type controls. Furthermore, exogenous progesterone treatment inhibited estrous cycles in wild-type female rats but not in Pgr-null female rats. As previously reported, pharmacologic antagonism supports a role for PGR signaling in the regulation of the ovulatory gonadotropin surge, a result at variance with experimentation using genetic ablation of PGR signaling. To conclude, our findings in the Pgr null rat challenge current assumptions and prompt a reevaluation of the hormonal control of reproductive cyclicity.


Assuntos
Progesterona/fisiologia , Reprodução/fisiologia , Animais , Éxons , Feminino , Hormônio Luteinizante/antagonistas & inibidores , Mifepristona/farmacologia , Mutação , Progesterona/genética , Ratos
16.
Proc Natl Acad Sci U S A ; 113(46): E7212-E7221, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807143

RESUMO

The hemochorial placenta develops from the coordinated multilineage differentiation of trophoblast stem (TS) cells. An invasive trophoblast cell lineage remodels uterine spiral arteries, facilitating nutrient flow, failure of which is associated with pathological conditions such as preeclampsia, intrauterine growth restriction, and preterm birth. Hypoxia plays an instructive role in influencing trophoblast cell differentiation and regulating placental organization. Key downstream hypoxia-activated events were delineated using rat TS cells and tested in vivo, using trophoblast-specific lentiviral gene delivery and genome editing. DNA microarray analyses performed on rat TS cells exposed to ambient or low oxygen and pregnant rats exposed to ambient or hypoxic conditions showed up-regulation of genes characteristic of an invasive/vascular remodeling/inflammatory phenotype. Among the shared up-regulated genes was matrix metallopeptidase 12 (MMP12). To explore the functional importance of MMP12 in trophoblast cell-directed spiral artery remodeling, we generated an Mmp12 mutant rat model using transcription activator-like nucleases-mediated genome editing. Homozygous mutant placentation sites showed decreased hypoxia-dependent endovascular trophoblast invasion and impaired trophoblast-directed spiral artery remodeling. A link was established between hypoxia/HIF and MMP12; however, evidence did not support Mmp12 as a direct target of HIF action. Lysine demethylase 3A (KDM3A) was identified as mediator of hypoxia/HIF regulation of Mmp12 Knockdown of KDM3A in rat TS cells inhibited the expression of a subset of the hypoxia-hypoxia inducible factor (HIF)-dependent transcripts, including Mmp12, altered H3K9 methylation status, and decreased hypoxia-induced trophoblast cell invasion in vitro and in vivo. The hypoxia-HIF-KDM3A-MMP12 regulatory circuit is conserved and facilitates placental adaptations to environmental challenges.


Assuntos
Fator 1 Induzível por Hipóxia , Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji , Metaloproteinase 12 da Matriz , Placenta/metabolismo , Animais , Linhagem Celular , Plasticidade Celular , Feminino , Humanos , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Gravidez , Ratos , Ratos Mutantes , Ratos Sprague-Dawley , Trofoblastos/fisiologia
17.
Biol Reprod ; 99(1): 196-211, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481584

RESUMO

Placentation is a reproductive adaptation that permits fetal growth and development within the protected confines of the female reproductive tract. Through this important role, the placenta also determines postnatal health and susceptibility to disease. The hemochorial placenta is a prominent feature in primate and rodent development. This manuscript provides an overview of the basics of hemochorial placental development and function, provides perspectives on major discoveries that have shaped placental research, and thoughts on strategies for future investigation.


Assuntos
Troca Materno-Fetal , Placenta/fisiologia , Placentação/fisiologia , Reprodução/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Feminino , Desenvolvimento Fetal/fisiologia , Humanos , Gravidez
18.
Proc Natl Acad Sci U S A ; 112(45): E6175-84, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26504231

RESUMO

Epithelial barrier integrity is dependent on progenitor cells that either divide to replenish themselves or differentiate into a specialized epithelium. This paradigm exists in human placenta, where cytotrophoblast cells either propagate or undergo a unique differentiation program: fusion into an overlying syncytiotrophoblast. Syncytiotrophoblast is the primary barrier regulating the exchange of nutrients and gases between maternal and fetal blood and is the principal site for synthesizing hormones vital for human pregnancy. How trophoblast cells regulate their differentiation into a syncytium is not well understood. In this study, we show that the transcription factor OVO-like 1 (OVOL1), a homolog of Drosophila ovo, regulates the transition from progenitor to differentiated trophoblast cells. OVOL1 is expressed in human placenta and was robustly induced following stimulation of trophoblast differentiation. Disruption of OVOL1 abrogated cytotrophoblast fusion and inhibited the expression of a broad set of genes required for trophoblast cell fusion and hormonogenesis. OVOL1 was required to suppress genes that maintain cytotrophoblast cells in a progenitor state, including MYC, ID1, TP63, and ASCL2, and bound specifically to regions upstream of each of these genes. Our results reveal an important function of OVOL1 as a regulator of trophoblast progenitor cell fate during human trophoblast development.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células-Tronco/fisiologia , Fatores de Transcrição/metabolismo , Trofoblastos/fisiologia , Análise de Variância , Animais , Sequência de Bases , Western Blotting , Imunoprecipitação da Cromatina , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Dados de Sequência Molecular , Gravidez , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Trofoblastos/citologia
19.
Biol Reprod ; 96(1): 145-158, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28395334

RESUMO

Natural killer (NK) cells are the most prevalent leukocyte population in the uterus during early pregnancy. Natural killer cells contribute to uterine vascular (spiral artery) remodeling in preparation for the increased demand on these vessels later in pregnancy. A second wave of spiral artery modification is directed by invasive trophoblast cells. The significance of the initial wave of NK-cell-mediated vascular remodeling in species exhibiting deep trophoblast invasion such as humans and rats is not known. The purpose of this study was to generate a genetic model of NK-cell deficiency in rats, and determine the consequences of NK-cell deficiency on spiral artery remodeling and reproductive outcomes. To accomplish this task, we utilized zinc finger nuclease-mediated genome editing of the rat interleukin-15 (Il15) gene. Il15 encodes a cytokine required for NK-cell lineage development. Using this strategy, a founder rat was generated containing a frameshift deletion in Il15. Uteri of females harboring a homozygous mutation at the Il15 locus contained no detectable NK cells. NK-cell deficiency did not impact fetal growth or viability. However, NK-cell deficiency caused major structural changes to the placenta, including expansion of the junctional zone and robust, early-onset activation of invasive trophoblast-guided spiral artery remodeling. In summary, we successfully generated an NK-cell-deficient rat and showed, using this model, that NK cells dampen the extent of trophoblast invasion and delay trophoblast-directed spiral artery remodeling. This study furthers our understanding of the role of NK cells on uterine vascular remodeling, trophoblast invasion, and placental development.


Assuntos
Células Matadoras Naturais/fisiologia , Placentação , Animais , Peso Corporal , Feminino , Interleucina-15/deficiência , Interleucina-15/genética , Masculino , Mutagênese Sítio-Dirigida , Tamanho do Órgão , Gravidez , Resultado da Gravidez , Ratos Sprague-Dawley , Baço/patologia
20.
Int J Toxicol ; 36(3): 199-206, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28481132

RESUMO

Estrogen receptor alpha (ESR1) is 1 of the 2 intracellular receptors for estrogen and is expressed by hepatocytes in the liver. The role of ESR1 in the regulation of toxicant-induced liver injury and compensatory regeneration is not completely clear. We investigated the role of ESR1 in liver regeneration after carbon tetrachloride (CCl4)-induced liver injury using wild type (WT) and ESR1 knockout (ESR1-KO) rats. Adult female WT and ESR1-KO rats were treated with 1 mL/kg CCl4 and euthanized over a time course of 0 to 48 hours. Liver injury measured by serum alanine amino transaminase, and histopathological analysis showed significantly higher liver injury in ESR1-KO as compared to WT rats. Hematoxylin and eosin staining revealed 2-fold higher necrosis and significant inflammatory cell infiltration in ESR1-KO rats. Chloracetate esterase staining revealed higher neutrophil infiltration in ESR1-KO rat livers. Interestingly, proliferating cell nuclear antigen immunohistochemistry showed that in spite of 2-fold higher liver injury, the ESR1-KO rats had equal liver regeneration as compared to WT rats. Western blot analysis of cyclin D1 and phosphorylated Rb, proteins involved in the initiation of the cell cycle, was significantly higher at all time points in ESR1-KO rats. Further analysis revealed faster activation of canonical Wnt/ß-catenin and NF-κB signaling in ESR1-KO rats characterized by higher activated ß-catenin and phosphorylated p65 at 12 hours after CCl4 treatment. Taken together, these data indicate that ESR1-mediated signaling inhibits liver regeneration by downregulation of Wnt signaling resulting in lower cyclin D1 activation after chemical-induced liver injury.


Assuntos
Intoxicação por Tetracloreto de Carbono/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Receptor alfa de Estrogênio/genética , Regeneração Hepática , Animais , Intoxicação por Tetracloreto de Carbono/patologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Feminino , Fígado/efeitos dos fármacos , Fígado/patologia , NF-kappa B/metabolismo , Ratos Transgênicos , Via de Sinalização Wnt , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA