Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 141(3): 108118, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244286

RESUMO

Biallelic pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause a pleiotropic multisystem disorder. Three clinical subgroups have been defined correlating with the localisation of pathogenic variants in the NBAS gene: variants affecting the C-terminal region of NBAS result in SOPH syndrome (short stature, optic atrophy, Pelger-Huët anomaly), variants affecting the Sec 39 domain are associated with infantile liver failure syndrome type 2 (ILFS2) and variants affecting the ß-propeller domain give rise to a combined phenotype. However, there is still unexplained phenotypic diversity across the three subgroups, challenging the current concept of genotype-phenotype correlations in NBAS-associated disease. Therefore, besides examining the genetic influence, we aim to elucidate the potential impact of pre-symptomatic diagnosis, emergency management and other modifying variables on the clinical phenotype. We investigated genotype-phenotype correlations in individuals sharing the same genotypes (n = 30 individuals), and in those sharing the same missense variants with a loss-of-function variant in trans (n = 38 individuals). Effects of a pre-symptomatic diagnosis and emergency management on the severity of acute liver failure (ALF) episodes also were analysed, comparing liver function tests (ALAT, ASAT, INR) and mortality. A strong genotype-phenotype correlation was demonstrated in individuals sharing the same genotype; this was especially true for the ILFS2 subgroup. Genotype-phenotype correlation in patients sharing only one missense variant was still high, though at a lower level. Pre-symptomatic diagnosis in combination with an emergency management protocol leads to a trend of reduced severity of ALF. High genetic impact on clinical phenotype in NBAS-associated disease facilitates monitoring and management of affected patients sharing the same genotype. Pre-symptomatic diagnosis and an emergency management protocol do not prevent ALF but may reduce its clinical severity.


Assuntos
Falência Hepática Aguda , Neuroblastoma , Anomalia de Pelger-Huët , Humanos , Fenótipo , Anomalia de Pelger-Huët/complicações , Anomalia de Pelger-Huët/genética , Anomalia de Pelger-Huët/patologia , Falência Hepática Aguda/genética , Mutação de Sentido Incorreto , Neuroblastoma/complicações
2.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068970

RESUMO

The long pentraxin 3 (PTX3) is a soluble glycoprotein made by immune and nonimmune cells endowed with pleiotropic functions in innate immunity, inflammation, and tissue remodeling. PTX3 has recently emerged as a mediator of bone turnover in both physiological and pathological conditions, with direct and indirect effects on osteoblasts and osteoclasts. This notwithstanding, its role in bone biology, with major regard to the osteogenic potential of osteoblasts and their interplay with osteoclasts, is at present unclear. Here, we investigated the contribution of this pentraxin to bone deposition in the osteogenic lineage by assessing collagen production, mineralization capacity, osteoblast maturation, extracellular matrix gene expression, and inflammatory mediators' production in primary osteoblasts from the calvaria of wild-type (WT) and Ptx3-deficient (Ptx3-/-) mice. Also, we evaluated the effect of PTX3 on osteoclastogenesis in cocultures of primary osteoblasts and bone marrow-derived osteoclasts. Our investigations were carried out both in physiological and inflammatory conditions to recapitulate in vitro aspects of inflammatory diseases of the bone. We found that primary osteoblasts from WT animals constitutively expressed low levels of the protein in osteogenic noninflammatory conditions, and genetic ablation of PTX3 in these cells had no major impact on collagen and hydroxyapatite deposition. However, Ptx3-/- osteoblasts had an increased RANKL/OPG ratio and CD44 expression, which resulted in in enhanced osteoclastogenesis when cocultured with bone marrow monocytes. Inflammation (modelled through administration of tumor necrosis factor-α, TNF-α) boosted the expression and accumulation of PTX3 and inflammatory mediators in WT osteoblasts. In these conditions, Ptx3 genetic depletion was associated with reduced collagen deposition and immune modulators' production. Our study shed light on the role of PTX3 in osteoblast and osteoclast biology and identified a major effect of inflammation on the bone-related properties of this pentraxin, which might be relevant for therapeutic and/or diagnostic purposes in musculoskeletal pathology.


Assuntos
Osteoclastos , Osteogênese , Camundongos , Animais , Osteogênese/genética , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Inflamação/metabolismo , Diferenciação Celular , Crânio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Colágeno/metabolismo , Mediadores da Inflamação/metabolismo , Ligante RANK/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768954

RESUMO

Upon infection, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is predicted to interact with diverse cellular functions, such as the nonsense-mediated decay (NMD) pathway, as suggested by the identification of the core NMD factor upframeshift-1 (UPF1) in the SARS-CoV-2 interactome, and the retrograde transport from the Golgi to the endoplasmic reticulum (ER) through the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), where coronavirus assembly occurs. Here, we investigated the expression and localization of the neuroblastoma-amplified sequence (NBAS) protein, a UPF1 partner for the NMD at the ER, participating also in retrograde transport, and of its functional partners, at early time points after SARS-CoV-2 infection of the human lung epithelial cell line Calu3. We found a significant decrease of DExH-Box Helicase 34 (DHX34), suppressor with morphogenetic effect on genitalia 5 (SMG5), and SMG7 expression at 6 h post-infection, followed by a significant increase of these genes and also UPF1 and UPF2 at 9 h post-infection. Conversely, NBAS and other genes coding for NMD factors were not modulated. Known NMD substrates related to cell stress (Growth Arrest Specific 5, GAS5; transducin beta-like 2, TBL2; and DNA damage-inducible transcript 3, DDIT3) were increased in infected cells, possibly as a result of alterations in the NMD pathway and of a direct effect of the infection. We also found that the expression of unconventional SNARE in the ER 1, USE1 (p31) and Zeste White 10 homolog, ZW10, partners of NBAS in the retrograde transport function, significantly increased over time in infected cells. Co-localization of NBAS and UPF1 proteins did not change within 24 h of infection nor did it differ in infected versus non-infected cells at 1 and 24 h after infection; similarly, the co-localization of NBAS and p31 proteins was not altered by infection in this short time frame. Finally, both NBAS and UPF1 were found to co-localize with SARS-CoV-2 S and N proteins. Overall, these data are preliminary evidence of an interaction between NBAS and NBAS-related functions and SARS-CoV-2 in infected cells, deserving further investigation.


Assuntos
COVID-19 , Neuroblastoma , Humanos , RNA Helicases/genética , RNA Helicases/metabolismo , COVID-19/genética , SARS-CoV-2/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Transativadores/metabolismo , Proteínas de Transporte/metabolismo
4.
Opt Express ; 30(17): 30135-30148, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242123

RESUMO

We introduce a broadband coherent anti-Stokes Raman scattering (CARS) microscope based on a 2-MHz repetition rate ytterbium laser generating 1035-nm high-energy (≈µJ level) femtosecond pulses. These features of the driving laser allow producing broadband red-shifted Stokes pulses, covering the whole fingerprint region (400-1800 cm-1), employing supercontinuum generation in a bulk crystal. Our system reaches state-of-the-art acquisition speed (<1 ms/pixel) and unprecedented sensitivity of ≈14.1 mmol/L when detecting dimethyl sulfoxide in water. To further improve the performance of the system and to enhance the signal-to-noise ratio of the CARS spectra, we designed a convolutional neural network for spectral denoising, coupled with a post-processing pipeline to distinguish different chemical species of biological tissues.


Assuntos
Aprendizado Profundo , Análise Espectral Raman , Dimetil Sulfóxido , Água , Itérbio
5.
Molecules ; 27(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35745051

RESUMO

The dipeptidyl peptidase 3 (Dpp3) is a ubiquitous zinc-dependent aminopeptidase, participating in the activation or degradation of signaling peptides and in the Keap1−Nrf2 antioxidant pathway. The absence of Dpp3 in the Dpp3 knockout mouse model causes increased osteoclast activity, altered osteogenic function, sustained oxidative stress in the bone tissue, and bone loss. We aimed to assess the association of Dpp3 activity with bone fragility in postmenopausal osteoporosis and the impact of denosumab on enzymatic activity. We conducted a two-phase study including 69 postmenopausal women with severe osteoporosis and 36 postmenopausal women without osteometabolic conditions, as controls (cross-sectional phase). Subjects with severe osteoporosis were assessed at baseline and 14 days after the first denosumab administration (prospective phase). The results showed significant reduction in serum Dpp3 activity (expressed as nmoles of formed product/mg proteins/min) in patients vs. controls (0.791 ± 0.232 vs. 1.195 ± 0.338; p < 0.001), and significant association with bone mass at the femoral neck (r = 0.28, p = 0.02) in patients prior to treatment. We found a negative correlation between C-terminal telopeptide (CTX) or N-terminal pro-peptide of type 1 procollagen (P1NP) levels and Dpp3 activity (respectively, r = −0.29, p = 0.012; and r = −0.2572, p = 0.033). Dpp3 activity did not change after denosumab injection. Our findings support a critical role played by Dpp3 in bone homeostasis as a potential bone protective factor. Additional clinical studies in larger cohorts might explore the implementation of Dpp3 assessment as a biomarker of bone health status.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Animais , Biomarcadores , Densidade Óssea , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Estudos Transversais , Denosumab/metabolismo , Denosumab/farmacologia , Denosumab/uso terapêutico , Dipeptidil Peptidases e Tripeptidil Peptidases , Feminino , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/genética , Pós-Menopausa , Estudos Prospectivos
6.
Haematologica ; 106(1): 74-86, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31949009

RESUMO

Allogeneic hematopoietic stem cell transplantation is the treatment of choice for autosomal recessive osteopetrosis caused by defects in the TCIRG1 gene. Despite recent progress in conditioning, a relevant number of patients are not eligible for allogeneic stem cell transplantation because of the severity of the disease and significant transplant-related morbidity. We exploited peripheral CD34+ cells, known to circulate at high frequency in the peripheral blood of TCIRG1-deficient patients, as a novel cell source for autologous transplantation of gene corrected cells. Detailed phenotypical analysis showed that circulating CD34+ cells have a cellular composition that resembles bone marrow, supporting their use in gene therapy protocols. Transcriptomic profile revealed enrichment in genes expressed by hematopoietic stem and progenitor cells (HSPCs). To overcome the limit of bone marrow harvest/ HSPC mobilization and serial blood drawings in TCIRG1 patients, we applied UM171-based ex-vivo expansion of HSPCs coupled with lentiviral gene transfer. Circulating CD34+ cells from TCIRG1-defective patients were transduced with a clinically-optimized lentiviral vector (LV) expressing TCIRG1 under the control of phosphoglycerate promoter and expanded ex vivo. Expanded cells maintained long-term engraftment capacity and multi-lineage repopulating potential when transplanted in vivo both in primary and secondary NSG recipients. Moreover, when CD34+ cells were differentiated in vitro, genetically corrected osteoclasts resorbed the bone efficiently. Overall, we provide evidence that expansion of circulating HSPCs coupled to gene therapy can overcome the limit of stem cell harvest in osteopetrotic patients, thus opening the way to future gene-based treatment of skeletal diseases caused by bone marrow fibrosis.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Osteopetrose , ATPases Vacuolares Próton-Translocadoras , Antígenos CD34 , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Osteoclastos/metabolismo , Osteopetrose/genética , Osteopetrose/terapia , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
7.
Stem Cells ; 35(5): 1365-1377, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28100034

RESUMO

Autosomal recessive osteopetrosis (ARO) is a severe bone disease characterized by increased bone density due to impairment in osteoclast resorptive function or differentiation. Hematopoietic stem cell transplantation is the only available treatment; however, this therapy is not effective in RANKL-dependent ARO, since in bone this gene is mainly expressed by cells of mesenchymal origin. Of note, whether lack of RANKL production might cause a defect also in the bone marrow (BM) stromal compartment, possibly contributing to the pathology, is unknown. To verify this possibility, we generated and characterized BM mesenchymal stromal cell (BM-MSC) lines from wild type and Rankl-/- mice, and found that Rankl-/- BM-MSCs displayed reduced clonogenicity and osteogenic capacity. The differentiation defect was significantly improved by lentiviral transduction of Rankl-/- BM-MSCs with a vector stably expressing human soluble RANKL (hsRANKL). Expression of Rankl receptor, Rank, on the cytoplasmic membrane of BM-MSCs pointed to the existence of an autocrine loop possibly activated by the secreted cytokine. Based on the close resemblance of RANKL-defective osteopetrosis in humans and mice, we expect that our results are also relevant for RANKL-dependent ARO patients. Data obtained in vitro after transduction with a lentiviral vector expressing hsRANKL would suggest that restoration of RANKL production might not only rescue the defective osteoclastogenesis of this ARO form, but also improve a less obvious defect in the osteoblast lineage, thus possibly achieving higher benefit for the patients, when the approach is translated to clinics. Stem Cells 2017;35:1365-1377.


Assuntos
Diferenciação Celular , Vetores Genéticos/metabolismo , Lentivirus/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Ligante RANK/deficiência , Animais , Biomarcadores/metabolismo , Células Clonais , Imunofenotipagem , Camundongos Endogâmicos C57BL , Ligante RANK/metabolismo , Transdução de Sinais , Transdução Genética
8.
Curr Osteoporos Rep ; 16(1): 13-25, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335834

RESUMO

PURPOSE OF REVIEW: The term osteopetrosis refers to a group of rare skeletal diseases sharing the hallmark of a generalized increase in bone density owing to a defect in bone resorption. Osteopetrosis is clinically and genetically heterogeneous, and a precise molecular classification is relevant for prognosis and treatment. Here, we review recent data on the pathogenesis of this disorder. RECENT FINDINGS: Novel mutations in known genes as well as defects in new genes have been recently reported, further expanding the spectrum of molecular defects leading to osteopetrosis. Exploitation of next-generation sequencing tools is ever spreading, facilitating differential diagnosis. Some complex phenotypes in which osteopetrosis is accompanied by additional clinical features have received a molecular classification, also involving new genes. Moreover, novel types of mutations have been recognized, which for their nature or genomic location are at high risk being neglected. Yet, the causative mutation is unknown in some patients, indicating that the genetics of osteopetrosis still deserves intense research efforts.


Assuntos
Osteopetrose/genética , Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Osteopetrose/fisiopatologia
9.
Int J Mol Sci ; 19(10)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322134

RESUMO

Mesenchymal stem cells (MSCs) are recognized as an attractive tool owing to their self-renewal and differentiation capacity, and their ability to secrete bioactive molecules and to regulate the behavior of neighboring cells within different tissues. Accumulating evidence demonstrates that cells prefer three-dimensional (3D) to 2D culture conditions, at least because the former are closer to their natural environment. Thus, for in vitro studies and in vivo utilization, great effort is being dedicated to the optimization of MSC 3D culture systems in view of achieving the intended performance. This implies understanding cell⁻biomaterial interactions and manipulating the physicochemical characteristics of biomimetic scaffolds to elicit a specific cell behavior. In the bone field, biomimetic scaffolds can be used as 3D structures, where MSCs can be seeded, expanded, and then implanted in vivo for bone repair or bioactive molecules release. Actually, the union of MSCs and biomaterial has been greatly improving the field of tissue regeneration. Here, we will provide some examples of recent advances in basic as well as translational research about MSC-seeded scaffold systems. Overall, the proliferation of tools for a range of applications witnesses a fruitful collaboration among different branches of the scientific community.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Osteogênese , Animais , Materiais Biomiméticos/química , Diferenciação Celular , Proliferação de Células , Humanos , Alicerces Teciduais/química , Pesquisa Translacional Biomédica
10.
J Immunol ; 194(9): 4144-53, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25825446

RESUMO

The immune and the skeletal system are tightly interconnected, and B lymphocytes are uniquely endowed with osteo-interactive properties. In this context, receptor activator of NF-κB (RANK) ligand (RANKL) plays a pivotal role in lymphoid tissue formation and bone homeostasis. Although murine models lacking RANK or RANKL show defects in B cell number, the role of the RANKL-RANK axis on B physiology is still a matter of debate. In this study, we have characterized in detail B cell compartment in Rankl(-/-) mice, finding a relative expansion of marginal zone B cells, B1 cells, and plasma cells associated with increased Ig serum levels, spontaneous germinal center formation, and hyperresponse to CD40 triggering. Such abnormalities were associated with an increased frequency of regulatory B cells and augmented B cell-derived IL-10 production. Remarkably, in vivo IL-10-R blockade reduced T cell-triggered plasma cell differentiation and restrained the expansion of regulatory B cells. These data point to a novel role of the RANKL-RANK axis in the regulation of B cell homeostasis and highlight an unexpected link between IL-10 CD40 signaling and the RANKL pathway.


Assuntos
Linfócitos B/imunologia , Interleucina-10/imunologia , Ligante RANK/deficiência , Ligante RANK/imunologia , Animais , Camundongos , Camundongos Knockout
11.
Nat Genet ; 39(8): 960-2, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17632511

RESUMO

Autosomal recessive osteopetrosis is usually associated with normal or elevated numbers of nonfunctional osteoclasts. Here we report mutations in the gene encoding RANKL (receptor activator of nuclear factor-KB ligand) in six individuals with autosomal recessive osteopetrosis whose bone biopsy specimens lacked osteoclasts. These individuals did not show any obvious defects in immunological parameters and could not be cured by hematopoietic stem cell transplantation; however, exogenous RANKL induced formation of functional osteoclasts from their monocytes, suggesting that they could, theoretically, benefit from exogenous RANKL administration.


Assuntos
Osteopetrose/genética , Ligante RANK/genética , Animais , Consanguinidade , Feminino , Genes Recessivos , Humanos , Masculino , Camundongos , Osteoclastos , Linhagem
12.
J Clin Immunol ; 34(3): 304-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24481607

RESUMO

Severe combined immunodeficiency (SCID), including the 'variant' Omenn syndrome (OS), represent a heterogeneous group of monogenic disorders characterized by defect in differentiation of T- and/or B lymphocytes and susceptibility to infections since birth. In the period of 25 years, between January 1986 and December 2010, a total of 21 patients (15 SCID, 6 OS) were diagnosed in Mother & Child Health Institute of Serbia, a tertiary-care teaching University hospital and a national referral center for patients affected with primary immunodeficiency (PID). The diagnoses were based on anamnestic data, clinical findings, and immunological and genetic analysis. The median age at the onset of the first infection was the 2nd month of life. Seven (33 %) patients had positive family history for SCID. Out of five male infants with T-B+NK- SCID phenotype, mutation analysis revealed interleukin-2 (common) gamma-chain receptor (IL2RG) mutations in 3 with positive X-linked family history, and Janus-kinase (JAK)-3 gene defects in the other two. Six patients had T-B-NK+ SCID phenotype and further 6 features of OS, 11 of which had recombinase-activating gene (RAG1or RAG2) and 1 Artemis gene mutations. One child with T+B+NK+ SCID phenotype as well had proven RAG mutation. One child each with T-B+NK+ SCID phenotype, CD8 lymphopenia and unknown phenotype remained without known underlying genetic defect. Of the eight patients who underwent hematopoetic stem cell transplant (HSCT) 5 survived, the other 13 died between 2 days and 12 months after diagnosis was made. Early diagnosis of SCID, before onset of severe infections, offers possibility for HSCT and cure. Education of primary-care pediatricians, in particular including awareness of the risk of using live vaccines and non-irradiated blood products, should improve prognosis of SCID in our setting.


Assuntos
Imunodeficiência Combinada Severa/epidemiologia , Idade de Início , Diagnóstico Tardio , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Recém-Nascido , Montenegro/epidemiologia , Triagem Neonatal , Diagnóstico Pré-Natal , Estudos Retrospectivos , Sérvia/epidemiologia , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/terapia , Resultado do Tratamento
13.
Front Cell Dev Biol ; 12: 1372873, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404687

RESUMO

Pre-B cell leukemia factor 1 (PBX1) is a Three Aminoacid Loop Extension (TALE) homeodomain-containing transcription factor playing crucial roles in organ pattering during embryogenesis, through the formation of nuclear complexes with other TALE class and/or homeobox proteins to regulate target genes. Its contribution to the development of several organs has been elucidated mainly through the study of murine knockout models. A crucial role for human development has been recently highlighted through the discovery of different de novo pathogenic PBX1 variants in children affected by developmental defects. In the adult, PBX1 is expressed in selected tissues such as in the brain, in the gastro-intestinal and urinary systems, or in hematopoietic stem and progenitor cells, while in other organs is barely detectable. When involved in the t(1;19) chromosomal translocation it acts as an oncogene, since the resulting fusion protein drives pre-B cell leukemia, due to the induction of target genes not normally targeted by the native protein. Its aberrant expression has been associated to tumor development, progression, or therapy-resistance as in breast cancer, ovarian cancer or myeloproliferative neoplasm (MPN). On the other hand, in colorectal cancer PBX1 functions as a tumor suppressor, highlighting its context-dependent role. We here discuss differences and analogies of PBX1 roles during embryonic development and in cancer, focusing mainly on the most recent discoveries.

14.
Stem Cell Res Ther ; 15(1): 203, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971808

RESUMO

BACKGROUND: Skeletal Stem Cells (SSCs) are required for skeletal development, homeostasis, and repair. The perspective of their wide application in regenerative medicine approaches has supported research in this field, even though so far results in the clinic have not reached expectations, possibly due also to partial knowledge of intrinsic, potentially actionable SSC regulatory factors. Among them, the pleiotropic cytokine RANKL, with essential roles also in bone biology, is a candidate deserving deep investigation. METHODS: To dissect the role of the RANKL cytokine in SSC biology, we performed ex vivo characterization of SSCs and downstream progenitors (SSPCs) in mice lacking Rankl (Rankl-/-) by means of cytofluorimetric sorting and analysis of SSC populations from different skeletal compartments, gene expression analysis, and in vitro osteogenic differentiation. In addition, we assessed the effect of the pharmacological treatment with the anti-RANKL blocking antibody Denosumab (approved for therapy in patients with pathological bone loss) on the osteogenic potential of bone marrow-derived stromal cells from human healthy subjects (hBMSCs). RESULTS: We found that, regardless of the ossification type of bone, osteochondral SSCs had a higher frequency and impaired differentiation along the osteochondrogenic lineage in Rankl-/- mice as compared to wild-type. Rankl-/- mice also had increased frequency of committed osteochondrogenic and adipogenic progenitor cells deriving from perivascular SSCs. These changes were not due to the peculiar bone phenotype of increased density caused by lack of osteoclast resorption (defined osteopetrosis); indeed, they were not found in another osteopetrotic mouse model, i.e., the oc/oc mouse, and were therefore not due to osteopetrosis per se. In addition, Rankl-/- SSCs and primary osteoblasts showed reduced mineralization capacity. Of note, hBMSCs treated in vitro with Denosumab had reduced osteogenic capacity compared to control cultures. CONCLUSIONS: We provide for the first time the characterization of SSPCs from mouse models of severe recessive osteopetrosis. We demonstrate that Rankl genetic deficiency in murine SSCs and functional blockade in hBMSCs reduce their osteogenic potential. Therefore, we propose that RANKL is an important regulatory factor of SSC features with translational relevance.


Assuntos
Diferenciação Celular , Osteogênese , Ligante RANK , Animais , Ligante RANK/metabolismo , Ligante RANK/genética , Camundongos , Osteogênese/genética , Humanos , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos Knockout , Denosumab/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células Cultivadas , Camundongos Endogâmicos C57BL
15.
Genes (Basel) ; 15(5)2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38790226

RESUMO

Periprosthetic joint infections (PJIs) are serious complications of prosthetic surgery. The criteria for the diagnosis of PJI integrate clinical and laboratory findings in a complex and sometimes inconclusive workflow. Host immune factors hold potential as diagnostic biomarkers in bone and joint infections. We reported that the humoral pattern-recognition molecule long pentraxin 3 (PTX3) predicts PJI in total hip and knee arthroplasty (THA and TKA, respectively). If and how genetic variation in PTX3 and inflammatory genes that affect its expression (IL-1ß, IL-6, IL-10, and IL-17A) contributes to the risk of PJI is unknown. We conducted a case-control study on a Caucasian historic cohort of THA and TKA patients who had prosthesis explant due to PJI (cases) or aseptic complications (controls). Saliva was collected from 93 subjects and used to extract DNA and genotype PTX3, IL-1ß, IL-6, IL-10, and IL-17A single-nucleotide polymorphisms (SNPs). Moreover, the concentration of IL-1ß, IL-10, and IL-6 was measured in synovial fluid and plasma. No association was found between PTX3 polymorphisms and PJI; however, the AGG haplotype, encompassing rs2853550, rs1143634, and rs1143627 in IL-1ß, was linked to the infection (p = 0.017). Also, synovial levels of all inflammatory markers were higher in cases than in controls, and a correlation emerged between synovial concentration of PTX3 and that of IL-1ß in cases only (Spearman r = 0.67, p = 0.004). We identified a relationship between rs2853550 and the synovial concentration of IL-1ß and PTX3. Our findings suggest that IL-1ß SNPs could be used for the early identification of THA and TKA patients with a high risk of infection.


Assuntos
Artroplastia de Quadril , Artroplastia do Joelho , Predisposição Genética para Doença , Interleucina-1beta , Polimorfismo de Nucleotídeo Único , Infecções Relacionadas à Prótese , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artroplastia de Quadril/efeitos adversos , Artroplastia do Joelho/efeitos adversos , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Estudos de Casos e Controles , Marcadores Genéticos , Interleucina-1beta/genética , Infecções Relacionadas à Prótese/genética , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo
16.
Nat Commun ; 15(1): 5202, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898004

RESUMO

Acoustic vibrations of matter convey fundamental viscoelastic information that can be optically retrieved by hyperfine spectral analysis of the inelastic Brillouin scattered light. Increasing evidence of the central role of the viscoelastic properties in biological processes has stimulated the rise of non-contact Brillouin microscopy, yet this method faces challenges in turbid samples due to overwhelming elastic background light. Here, we introduce a common-path Birefringence-Induced Phase Delay (BIPD) filter to disentangle the polarization states of the Brillouin and Rayleigh signals, enabling the rejection of the background light using a polarizer. We demonstrate a 65 dB extinction ratio in a single optical pass collecting Brillouin spectra in extremely scattering environments and across highly reflective interfaces. We further employ the BIPD filter to image bone tissues from a mouse model of osteopetrosis, highlighting altered biomechanical properties compared to the healthy control. Results herald new opportunities in mechanobiology where turbid biological samples remain poorly characterized.


Assuntos
Elasticidade , Animais , Birrefringência , Camundongos , Viscosidade , Fenômenos Biomecânicos , Osso e Ossos/diagnóstico por imagem , Luz , Espalhamento de Radiação
17.
Clin Dev Immunol ; 2013: 412768, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762088

RESUMO

Since its identification, the RANKL cytokine has been demonstrated to play a crucial role in bone homeostasis and lymphoid tissue organization. Genetic defects impairing its function lead to a peculiar form of autosomal recessive osteopetrosis (ARO), a rare genetic bone disease presenting early in life and characterized by increased bone density due to failure in bone resorption by the osteoclasts. Hematopoietic stem cell transplantation (HSCT) is the only option for the majority of patients affected by this life-threatening disease. However, the RANKL-dependent ARO does not gain any benefit from this approach, because the genetic defect is not intrinsic to the hematopoietic osteoclast lineage but rather to the mesenchymal one. Of note, we recently provided proof of concept of the efficacy of a pharmacological RANKL-based therapy to cure this form of the disease. Here we provide an overview of the diverse roles of RANKL in the bone and immune systems and review the clinical features of RANKL-deficient ARO patients and the results of our preclinical studies. We emphasize that these patients present a continuous worsening of the disease in the absence of a cure and strongly wish that the therapy we propose will be further developed.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Osso e Ossos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteopetrose/tratamento farmacológico , Ligante RANK/imunologia , Ligante RANK/farmacologia , Animais , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/genética , Reabsorção Óssea/imunologia , Reabsorção Óssea/patologia , Osso e Ossos/imunologia , Osso e Ossos/patologia , Regulação da Expressão Gênica/imunologia , Genes Recessivos , Transplante de Células-Tronco Hematopoéticas , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Sistema Imunitário/efeitos dos fármacos , Camundongos , Mutação , Osteoclastos/imunologia , Osteoclastos/patologia , Osteopetrose/genética , Osteopetrose/imunologia , Osteopetrose/patologia , Ligante RANK/genética
18.
Front Aging ; 4: 1201019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362206

RESUMO

Different from inflammatory arthritis, where biologicals and targeted synthetic molecules have revolutionized the disease course, no drug has demonstrated a disease modifying activity in osteoarthritis, which remains one of the most common causes of disability and chronic pain worldwide. The pharmacological therapy of osteoarthritis is mainly directed towards symptom and pain relief, and joint replacement is still the only curative strategy. Elucidating the disease pathophysiology is essential to understand which mechanisms can be targeted by innovative therapies. It has extensively been demonstrated that aberrant WNT and IL-1 signaling pathways are responsible for cartilage degeneration, impaired chondrocyte metabolism and differentiation, increased extracellular matrix degradation, and altered subchondral bone homeostasis. Platelet-rich plasma is an autologous blood derivative containing a concentration of platelets that is much higher than the whole blood counterpart and has shown promising results in the treatment of early knee osteoarthritis. Among the proposed mechanisms, the modulation of WNT and IL-1 pathways is of paramount importance and is herein reviewed in light of the proposed regenerative approaches.

19.
Calcif Tissue Int ; 91(4): 250-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22847576

RESUMO

Human malignant autosomal recessive osteopetrosis (ARO) is a genetically heterogeneous disorder caused by reduced bone resorption by osteoclasts. Mutations in the CLCN7 gene are responsible not only for a substantial portion of ARO patients but also for other forms of osteopetrosis characterized by different severity and inheritance. The lack of a clear genotype/phenotype correlation makes genetic counseling a tricky issue for CLCN7-dependent osteopetrosis. Here, we characterize the first homozygous interstitial deletion in 16p13.3, detected by array comparative genomic hybridization in an ARO patient of Jordanian origin. The deletion involved other genes besides CLCN7, while the proband displayed a classic ARO phenotype; however, her early death did not allow more extensive clinical investigations. The identification of this novel genomic deletion involving a large part of the CLCN7 gene is of clinical relevance, especially in prenatal diagnosis, and suggests the possibility that this kind of mutation has been underestimated so far. These data highlight the need for alternative approaches to genetic analysis also in other ARO-causative genes.


Assuntos
Cromossomos Humanos Par 16/genética , Deleção de Genes , Genes Recessivos , Homozigoto , Osteopetrose/genética , Sequência de Bases , Canais de Cloreto/genética , Hibridização Genômica Comparativa , Humanos , Lactente , Dados de Sequência Molecular , Mutação , Fenótipo
20.
Bone ; 164: 116541, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031188

RESUMO

Osteopetrosis (OPT) is a rare inherited bone disease characterized by a bone resorption defect, due to osteoclast malfunction (in osteoclast-rich, oc-rich, OPT forms) or absence (in oc-poor OPT forms). This causes severe clinical abnormalities, including increased bone density, lack of bone marrow cavity, stunted growth, macrocephaly, progressive deafness, blindness, hepatosplenomegaly, and severe anemia. The oc-poor subtype of OPT is ultra-rare in humans. It is caused by mutations in either the tumor necrosis factor ligand superfamily member 11 (TNFSF11) gene, encoding RANKL (Receptor Activator of Nuclear factor-kappa B [NF-κB] Ligand) which is expressed on cells of mesenchymal origin and lymphocytes, or the TNFRSF member 11A (TNFRSF11A) gene, encoding the RANKL functional receptor RANK which is expressed on cells of myeloid lineage including osteoclasts. Clinical presentation is usually severe with onset in early infancy or in fetal life, although as more patients are reported, expressivity is variable. Phenotypic variability of RANK-deficient OPT sometimes includes hypogammaglobulinemia or radiological features of dysosteosclerosis. Disease progression is somewhat slower in RANKL-deficient OPT than in other 'malignant' subtypes of OPT. While both RANKL and RANK are essential for normal bone turnover, hematopoietic stem cell transplantation (HSCT) is the treatment of choice only for patients with the RANK-deficient form of oc-poor OPT. So far, there is no cure for RANKL-deficient OPT.


Assuntos
Osteopetrose , Ligante RANK , Diferenciação Celular , Humanos , Ligantes , NF-kappa B , Osteoclastos/patologia , Osteopetrose/congênito , Osteopetrose/patologia , Ligante RANK/genética , Receptor Ativador de Fator Nuclear kappa-B/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA