RESUMO
In this work, Grinnellian niche theory (a body of theory about geographic distributions of species in terms of noninteracting niche variables) is used to demonstrate that species-area relationships emerge with both size of environmental space and size of geographic area. As environmental space increases, more species' fundamental niches are included, thus increasing the number of species capable of living in the corresponding region. This idea is made operational by proposing a size measure for multidimensional environmental space and approximating fundamental niches with minimum volume ellipsoids. This framework allows estimating a presence-absence matrix based on the distribution of fundamental niches in environmental space, from which many biodiversity measures can be calculated, such as beta diversity. I establish that Whittaker's equation for beta diversity is equivalent to MacArthur's formula relating species numbers and niche breadth; this latter equation provides a mechanism for the species-niche space relationship. I illustrate the theoretical results via exploration of niches of the terrestrial mammals of North America (north of Panama). Each world region has a unique structure of its environmental space, and the position of fundamental niches in niche space is different for different clades; therefore, species-area relationships depend on the clades involved and the region of focus, mostly as a function of MacArthur's niche beta diversity. Analyzing species-area relationships from the perspective of niche position in environmental space is novel, shifting emphasis from demographic processes to historical, geographic, and climatic factors; moreover, the Grinnellian approach is based on available data and is computationally feasible.
Assuntos
Biodiversidade , Ecossistema , Animais , Mudança Climática , Mamíferos , Modelos Teóricos , América do NorteRESUMO
The recently created Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), originally focused on multilateral and global issues, is shifting its focus to address local issues and to include in its assessments local stakeholders and indigenous and traditional systems of knowledge. Acknowledging that full biodiversity governance is unavoidably rooted in participation of local actors and their problems and knowledge, we suggest that to deal successfully with the complexity and diversity of local issues, including indigenous knowledge systems, IPBES must recognize a key role of local institutions.
Assuntos
Agências Internacionais/legislação & jurisprudência , Cooperação Internacional/legislação & jurisprudência , Biodiversidade , Conservação dos Recursos Naturais/métodos , Cultura , Humanos , Agências Internacionais/éticaRESUMO
Species invasions represent a significant dimension of global change yet the dynamics of invasions remain poorly understood and are considered rather unpredictable. We explored interannual dynamics of the invasion process in the Eurasian collared dove (Streptopelia decaocto) and tested whether the advance of the invasion front of the species in North America relates to centrality (versus peripherality) within its estimated fundamental ecological niche. We used ecological niche modelling approaches to estimate the dimensions of the fundamental ecological niche on the Old World distribution of the species, and then transferred that model to the New World as measures of centrality versus peripherality within the niche for the species. Although our hypothesis was that the invasion front would advance faster over more favourable (i.e. more central) conditions, the reverse was the case: the invasion expanded faster in areas presenting less favourable (i.e. more peripheral) conditions for the species as it advanced across North America. This result offers a first view of a predictive approach to the dynamics of species' invasions, and thereby has relevant implications for the management of invasive species, as such a predictive understanding would allow better anticipation of coming steps and advances in the progress of invasions, important to designing and guiding effective remediation and mitigation efforts.
Assuntos
Columbidae , Espécies Introduzidas , Animais , Ecossistema , América do Norte , Dinâmica PopulacionalRESUMO
We describe a spatially explicit simulation experiment designed to assess relative impacts of macroecological traits on patterns of biological diversification under changing environmental conditions. Using a simulation framework, we assessed impacts of species' niche breadth (i.e., the range of their abiotic tolerances) and dispersal ability on resulting patterns of speciation and extinction and evaluated how these traits, in conjunction with environmental change, shape biological diversification. Simulation results supported both niche breadth and dispersal ability as important drivers of diversification in the face of environmental change, and suggested that the rate of environmental change influences how species interact with the extrinsic environment to generate diversity. Niche breadth had greater effects on speciation and extinction than dispersal ability when climate changed rapidly, whereas dispersal ability effects were elevated when climate changed slowly. Our simulations provide a bottom-up perspective on the generation and maintenance of diversity under climate change, offering a better understanding of potential interactions between species' intrinsic macroecological characteristics and a dynamic extrinsic environment in the process of biological diversification.
Assuntos
Evolução Biológica , Ecossistema , Distribuição Animal , Mudança Climática , Simulação por Computador , Especiação Genética , Geografia , Modelos Biológicos , Dispersão Vegetal , Dinâmica PopulacionalRESUMO
Decisionmakers need updated, scientifically sound and relevant information to implement appropriate policy measures and make innovative commitments to halt biodiversity loss and improve human well-being. Here, we present a recent science-based synthesis on the biodiversity and ecosystem services of Mexico, intended to be a tool for policymakers. We describe the methodological approach used to undertake such an assessment and highlight the major findings. Organized into five volumes and originally written in Spanish (Capital Natural de México), it summarizes the available knowledge on the components, structure, and functioning of the biodiversity of Mexico; the threats and trajectories of anthropogenic impact, together with its conservation status; and the policies, institutions, and instruments available for its sustainable management. We stress the lessons learned that can be useful for similar exercises in other megadiverse developing countries and identify major gaps and strategic actions to conserve the natural capital in light of the challenges of the Anthropocene.
RESUMO
Biodiversity informatics is a field that is growing rapidly in data infrastructure, tools, and participation by researchers worldwide from diverse disciplines and with diverse, innovative approaches. A recent 'decadal view' of the field laid out a vision that was nonetheless restricted and constrained by its European focus. Our alternative decadal view is global, i.e., it sees the worldwide scope and importance of biodiversity informatics as addressing five major, global goals: (1) mobilize existing knowledge; (2) share this knowledge and the experience of its myriad deployments globally; (3) avoid 'siloing' and reinventing the tools of knowledge deployment; (4) tackle biodiversity informatics challenges at appropriate scales; and (5) seek solutions to difficult challenges that are strategic.
Assuntos
Biodiversidade , Ecologia/métodos , Informática , Conservação dos Recursos Naturais , Disseminação de Informação , Gestão da InformaçãoRESUMO
At a global level, the relationship between biodiversity importance and capacity to manage it is often assumed to be negative, without much differentiation among the more than 200 countries and territories of the world. We examine this relationship using a database including terrestrial biodiversity, wealth and governance indicators for most countries. From these, principal components analysis was used to construct aggregated indicators at global and regional scales. Wealth, governance, and scientific capacity represent different skills and abilities in relation to biodiversity importance. Our results show that the relationship between biodiversity and the different factors is not simple: in most regions wealth and capacity varies positively with biodiversity, while governance vary negatively with biodiversity. However, these trends, to a certain extent, are concentrated in certain groups of nations and outlier countries. We discuss our results in the context of collaboration and joint efforts among biodiversity-rich countries and foreign agencies.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Governo , Ciência , Fatores SocioeconômicosRESUMO
In a world where biodiversity is on the line on many fronts-from armed conflict to pandemics to climate change-defending institutions that have effectively managed it is paramount. In the global effort to protect biodiversity, Mexico has been at the forefront. In particular, for more than 30 years, Mexico's National Commission for the Knowledge and Use of Biodiversity (CONABIO) has promoted research, compiled information on the biodiversity of Mexico and elsewhere, and connected academia, government, and society to guide decision-making. Unfortunately, the demise of CONABIO, which began in 2018 under the current administration, may be fully realized soon. Last month, the Mexican government announced its intent to reduce CONABIO from a multi-ministry federal government agency to a branch within the environment ministry. This will strip CONABIO of its independent voice, credibility, and influence on national and international policy. As this decision is open for public comment, it is important for the scientific community to speak out strongly against this change.
Assuntos
Biodiversidade , Política Pública , México , Órgãos GovernamentaisRESUMO
Changes in land cover directly affect biodiversity. Here, we assessed land-cover change in Cuba in the past 35 years and analyzed how this change may affect the distribution of Omphalea plants and Urania boisduvalii moths. We analyzed the vegetation cover of the Cuban archipelago for 1985 and 2020. We used Google Earth Engine to classify two satellite image compositions into seven cover types: forest and shrubs, mangrove, soil without vegetation cover, wetlands, pine forest, agriculture, and water bodies. We considered four different areas for quantifications of land-cover change: (1) Cuban archipelago, (2) protected areas, (3) areas of potential distribution of Omphalea, and (4) areas of potential distribution of the plant within the protected areas. We found that "forest and shrubs", which is cover type in which Omphalea populations have been reported, has increased significantly in Cuba in the past 35 years, and that most of the gained forest and shrub areas were agricultural land in the past. This same pattern was observed in the areas of potential distribution of Omphalea; whereas almost all cover types were mostly stable inside the protected areas. The transformation of agricultural areas into forest and shrubs could represent an interesting opportunity for biodiversity conservation in Cuba. Other detailed studies about biodiversity composition in areas of forest and shrubs gain would greatly benefit our understanding of the value of such areas for conservation.
Assuntos
Agricultura , Biodiversidade , Conservação dos Recursos Naturais , Cuba , Animais , Mariposas/fisiologia , FlorestasRESUMO
Background: Optimizing access to high-quality scientific journals has become an important priority for academic departments, including the ability to read the scientific literature and the ability to afford to publish papers in those journals. In this contribution, we assess the question of whether institutional investment in scientific journals aligns with the journals where researchers send their papers for publication, and where they serve as unpaid reviewers and editors. Methods: We assembled a unique suite of information about the publishing habits of our Department of Ecology and Evolutionary Biology, including summaries of 3,540 journal publications by 35 faculty members. These data include economic costs of journals to institutions and to authors, benefits to authors in terms of journal prestige and citation rates, and considerations of ease of reading access for individuals both inside and outside the university. This dataset included data on institutional costs, including subscription pricing (rarely visible to scholars), and "investment" by scholars in supporting journals, such as time spent as editors and reviewers. Results: Our results highlighted the complex set of relationships between these factors, and showed that institutional costs often do not match well with payoffs in terms of benefits to researchers (e.g., citation rate, prestige of journal, ease of access). Overall, we advocate for greater cost-benefit transparency to help compare different journals and different journal business models; such transparency would help both researchers and their institutions in investing wisely the limited resources available to academics.
Assuntos
Evolução Biológica , Ecologia , Humanos , Universidades , Comércio , EditoraçãoRESUMO
Evaluating potential routes of invasion of pathogens and vectors of sanitary importance is essential for planning and decision-making at multiple scales. An effective tool are process-explicit models that allow coupling environmental, demographic and dispersal information to evaluate population growth and range dynamics as a function of the abiotic conditions in a region. In this work we simulate multiple dispersal/invasion routes in Mexico that could be taken by ambrosia beetles and a specific symbiont, Harringtonia lauricola, responsible for a severe epiphytic of Lauraceae in North America. We used Xyleborus bispinatus Eichhoff 1868 as a study subject and estimated its demography in the laboratory in a temperature gradient (17, 20, 26, 29, 35 °C), which we then used to parameterize a process-based model to estimate its metapopulation dynamics. The maximum intrinsic growth rate of X. bispinatus is 0.13 with a thermal optimum of 26.2 °C. The models suggest important regions for the establishment and dispersal the states of Veracruz, Chiapas and Oaxaca (high host and secondary vectors diversity), the Isthmus of Tehuantepec (connectivity region), and Michoacán and Jalisco (important avocado plantations). The use of hybrid process-based models is a promising tool to refine the predictions applied to the study of biological invasions and species distributions.
Assuntos
Besouros , Lauraceae , Persea , Gorgulhos , Animais , DemografiaRESUMO
Estimating actual and potential areas of distribution of species via ecological niche modeling has become a very active field of research, yet important conceptual issues in this field remain confused. We argue that conceptual clarity is enhanced by adopting restricted definitions of "niche" that enable operational definitions of basic concepts like fundamental, potential, and realized niches and potential and actual distributional areas. We apply these definitions to the question of niche conservatism, addressing what it is that is conserved and showing with a quantitative example how niche change can be measured. In this example, we display the extremely irregular structure of niche space, arguing that it is an important factor in understanding niche evolution. Many cases of apparently successful models of distributions ignore biotic factors: we suggest explanations to account for this paradox. Finally, relating the probability of observing a species to ecological factors, we address the issue of what objects are actually calculated by different niche modeling algorithms and stress the fact that methods that use only presence data calculate very different quantities than methods that use absence data. We conclude that the results of niche modeling exercises can be interpreted much better if the ecological and mathematical assumptions of the modeling process are made explicit.
Assuntos
Algoritmos , Ecossistema , Modelos BiológicosRESUMO
The Asian giant hornet (AGH, Vespa mandarinia) is the world's largest hornet, occurring naturally in the Indomalayan region, where it is a voracious predator of pollinating insects including honey bees. In September 2019, a nest of Asian giant hornets was detected outside of Vancouver, British Columbia; multiple individuals were detected in British Columbia and Washington state in 2020; and another nest was found and eradicated in Washington state in November 2020, indicating that the AGH may have successfully wintered in North America. Because hornets tend to spread rapidly and become pests, reliable estimates of the potential invasive range of V. mandarinia in North America are needed to assess likely human and economic impacts, and to guide future eradication attempts. Here, we assess climatic suitability for AGH in North America, and suggest that, without control, this species could establish populations across the Pacific Northwest and much of eastern North America. Predicted suitable areas for AGH in North America overlap broadly with areas where honey production is highest, as well as with species-rich areas for native bumble bees and stingless bees of the genus Melipona in Mexico, highlighting the economic and environmental necessity of controlling this nascent invasion.
RESUMO
Understanding the causes of spatial variation in species richness is a major research focus of biogeography and macroecology. Gridded environmental data and species richness maps have been used in increasingly sophisticated curve-fitting analyses, but these methods have not brought us much closer to a mechanistic understanding of the patterns. During the past two decades, macroecologists have successfully addressed technical problems posed by spatial autocorrelation, intercorrelation of predictor variables and non-linearity. However, curve-fitting approaches are problematic because most theoretical models in macroecology do not make quantitative predictions, and they do not incorporate interactions among multiple forces. As an alternative, we propose a mechanistic modelling approach. We describe computer simulation models of the stochastic origin, spread, and extinction of species' geographical ranges in an environmentally heterogeneous, gridded domain and describe progress to date regarding their implementation. The output from such a general simulation model (GSM) would, at a minimum, consist of the simulated distribution of species ranges on a map, yielding the predicted number of species in each grid cell of the domain. In contrast to curve-fitting analysis, simulation modelling explicitly incorporates the processes believed to be affecting the geographical ranges of species and generates a number of quantitative predictions that can be compared to empirical patterns. We describe three of the 'control knobs' for a GSM that specify simple rules for dispersal, evolutionary origins and environmental gradients. Binary combinations of different knob settings correspond to eight distinct simulation models, five of which are already represented in the literature of macroecology. The output from such a GSM will include the predicted species richness per grid cell, the range size frequency distribution, the simulated phylogeny and simulated geographical ranges of the component species, all of which can be compared to empirical patterns. Challenges to the development of the GSM include the measurement of goodness of fit (GOF) between observed data and model predictions, as well as the estimation, optimization and interpretation of the model parameters. The simulation approach offers new insights into the origin and maintenance of species richness patterns, and may provide a common framework for investigating the effects of contemporary climate, evolutionary history and geometric constraints on global biodiversity gradients. With further development, the GSM has the potential to provide a conceptual bridge between macroecology and historical biogeography.
Assuntos
Biodiversidade , Ecologia/métodos , Modelos BiológicosRESUMO
To assess the completeness of a floristic or faunal inventory, one may use the ratio of the observed number of species to the "true number" of species (C). If the inventory is complete, C =1. The estimate of the true number can be obtained from accumulation curves, nonparametric methods, or other techniques. We devised a simple method for computing confidence intervals (CI) for C and for evaluating the null hypothesis that the inventory is complete. The method is based on the assumptions that an estimate of the variance of the true number of species is known and that the distribution of the estimator of the true number of species is approximately normal. We applied our method to bird inventories in the Balsas Basin of Mexico. The completeness index for subtransects were lower (84.0, 85.4, and 89.9%) than for the whole transect (91.6%) (all significantly different from 100%). Thus, these particular inventories were incomplete at 2 spatial resolutions. Our method of estimating CI for C can be used to estimate species richness obtained from databases of different sites or to test the null hypothesis that an inventory derived from a database is complete.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Modelos Biológicos , Animais , México , PlantasRESUMO
Development of effective indicators is indispensable for countries and societies to monitor effects of their actions on biodiversity, as is recognized in decision VI/26 of the Convention on Biological Diversity. Good indicators would ideally be scalable, at least for the different scales that characterize biodiversity patterns and process. Existing indicators are mostly global in scope, and often based on secondary information, such as classifications of endangered species, rather than on primary data. We propose a complementary approach, based on the increased availability of raw data about occurrences of species, cutting-edge modeling techniques for estimating distributional areas, and land-use information based on remotely sensed data to allow estimation of rates of range loss for species affected by land-use conversion. This method can be implemented by developing countries, given increasing availability of data and the open and well-documented nature of the techniques required.
Assuntos
Biodiversidade , Animais , Congressos como Assunto , Conservação dos Recursos Naturais , Ecologia/métodos , Extinção Biológica , Modelos Biológicos , Densidade DemográficaRESUMO
The latitudinal diversity gradient (LDG), where the number of species increases from the poles to the Equator, ranks among the broadest and most notable biodiversity patterns on Earth. The pattern of species-rich tropics relative to species-poor temperate areas has been recognized for well over a century, but the generative mechanisms are still debated vigorously. We use simulations to test whether spatio-temporal climatic changes could generate large-scale patterns of biodiversity as a function of only three biological processes-speciation, extinction and dispersal-omitting adaptive niche evolution, diversity-dependence and coexistence limits. In our simulations, speciation resulted from range disjunctions, whereas extinction occurred when no suitable sites were accessible to species. Simulations generated clear LDGs that closely match empirical LDGs for three major vertebrate groups. Higher tropical diversity primarily resulted from higher low-latitude speciation, driven by spatio-temporal variation in precipitation rather than in temperature. This suggests that spatio-temporal changes in low-latitude precipitation prompted geographical range disjunctions over Earth's history, leading to high rates of allopatric speciation that contributed to LDGs. Overall, we show that major global biodiversity patterns can derive from interactions of species' niches (fixed a priori in our simulations) with dynamic climate across complex, existing landscapes, without invoking biotic interactions or niche-related adaptations.
Assuntos
Biodiversidade , Mudança Climática , GeografiaRESUMO
The diversity of sites and the distribution of species are fundamental pieces in the analysis of biogeographic and macroecological questions. A link between these two variables is the correlation between the species diversity of sites and the mean range size of species occurring there. Alternatively, one could correlate the range sizes of species and the mean species diversity within those ranges. Here we show that both approaches are mirror images of the same patterns, reflecting fundamental mathematical and biological relationships. We develop a theory and analyze data for North American mammals to interpret range-diversity plots in which the species diversity of sites and the geographic range of species can be depicted simultaneously. We show that such plots contain much more information than traditional correlative approaches do, and we demonstrate that the positions of points in the plots are determined to a large extent by the average, minimum, and maximum values of range and diversity but that the dispersion of points depends on the association among species and the similitude among sites. These generalizations can be applied to biogeographic studies of diversity and distribution and in the identification of hotspots of diversity and endemism.
Assuntos
Biodiversidade , Mamíferos , Modelos Biológicos , Animais , Conservação dos Recursos Naturais , Ecossistema , América do NorteRESUMO
We analyze the invasive potential of two Asian ambrosia beetles, Xyleborus glabratus and Euwallacea sp., into Mexico and the southern United States. The fungal symbionts of these beetles have been responsible for damage to trees of the family Lauraceae, including Persea americana and other non-cultivated tree species on both coasts of the United States. We estimate their potential threat using ecological niche modeling and spatial multi-criteria evaluation protocols to incorporate plant and beetle suitabilities as well as forest stress factors across Mexico. Mexico contains higher climatic and habitat suitability for X. glabratus than for Euwallacea sp. Within this country, the neotropical region is most vulnerable to invasion by both of these species. We also identify a corridor of potential invasion for X. glabratus along the Gulf of Mexico coast where most Lauraceae and native Xyleborus species are present; dispersal of either X. glabratus or Euwallacea sp. into this region would likely lead to major disease spread. However, the overall potential damage that these beetles can cause may be a function of how many reproductive hosts and how many other ambrosia beetles are present, as well as of their capacity to disperse. This work can also alert relevant managers and authorities regarding this threat.
Assuntos
Florestas , Espécies Introduzidas/estatística & dados numéricos , Lauraceae/parasitologia , Árvores/parasitologia , Gorgulhos , Distribuição Animal , Animais , Clima , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , México , Modelos Biológicos , Medição de Risco , Estados UnidosRESUMO
The Convention on the Conservation of Migratory Species of Wild Animals (CMS) is a Multilateral Environmental Agreement (MEA) focused on species that regularly travel across international borders. Despite covering an important group of species, CMS is under-utilized compared to other conservation-focused MEAs. CMS suffers from a lack of participation across North America and most of Asia. Our goal is to illustrate differences in species richness and average range-size across signatory and nonsignatory nation-states using range-diversity plots. We also show differences in the cost of CMS membership relative to species patterns to highlight which countries may be discouraged from becoming CMS signatories. Despite containing many CMS species, large economies such as the United States, Russia, and China are not members of the convention. To facilitate migratory species conservation into the future, CMS should seek to fill gaps in participation, potentially directing recruitment efforts toward nonsignatory states that would receive the largest benefit at the lowest relative cost.