RESUMO
OBJECTIVES: Head and neck cancer (HNC) impairs patient immunity and increases susceptibility to oral fungal infections (OFIs). Effectively treating such infections requires accurate identification of the causative pathogens. This study aimed to characterize the mycobiota profile of OFIs in HNC patients undergoing radiation treatment (RT). MATERIALS AND METHODS: A 6-year retrospective analysis of oral mucosal samples from HNC patients with a history of RT and OFIs between 2014 and 2019 was conducted using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) profiling. Samples from the Clinical Microbiology Laboratory at Karolinska University Hospital were evaluated for mycobiota diversity and species co-occurrence patterns in the ongoing-RT and post-RT groups. RESULTS: A total of 190 oral fungi (88% Candida, 5% Pichia) were isolated from 162 HNC patients receiving RT. In the ongoing-RT group, the emergent non-albicans Candida (NAC) species; F. solani and C. jadinii, were detected for the first time. The dominant pathogens in both ongoing and post-RT groups were C. albicans, C. glabrata, P. kudriavzevii, C. parapsilosis, and C. tropicalis, as shown by Venn analysis. Network analysis revealed greater fungi diversity and multi-species co-occurrence in the ongoing-RT group. C. albicans commonly co-occurred with C. glabrata in both ongoing-RT (21%) and post-RT groups (30%). CONCLUSION: MALDI-TOF MS identified a wide range of oral fungal species in HNC patients receiving RT. While C. albicans remains the most prevalent OFIs pathogen, multi-species co-occurrence and novel NACs were noted. Understanding the ecological interactions among these causative pathogens could significantly advance the development of effective therapeutics for treating OFIs in HNC patients.
Assuntos
Neoplasias de Cabeça e Pescoço , Micoses , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Estudos Retrospectivos , Candida/química , Neoplasias de Cabeça e Pescoço/radioterapiaRESUMO
Coevolution of microbiome and immunity at mucosal sites is essential for our health. Whether the oral microbiome, the second largest community after the gut, contributes to the immunogenicity of COVID-19 vaccines is not known. We investigated the baseline oral microbiome in individuals in the COVAXID clinical trial receiving the BNT162b2 mRNA vaccine. Participants (n=115) included healthy controls (HC; n=57) and people living with HIV (PLHIV; n=58) who met the study selection criteria. Vaccine-induced Spike antibodies in saliva and serum from 0 to 6 months were assessed and comparative analyses were performed against the individual salivary 16S ASV microbiome diversity. High- versus low vaccine responders were assessed on general, immunological, and oral microbiome features. Our analyses identified oral microbiome features enriched in high- vs. low-responders among healthy and PLHIV participants. In low-responders, an enrichment of Gram-negative, anaerobic species with proteolytic activity were found including Campylobacter, Butyrivibrio, Selenomonas, Lachnoanaerobaculum, Leptotrichia, Megasphaera, Prevotella and Stomatobaculum. In high-responders, enriched species were mainly Gram-positive and saccharolytic facultative anaerobes: Abiotrophia, Corynebacterium, Gemella, Granulicatella, Rothia, and Haemophilus. Combining identified microbial features in a classifier using the area under the receiver operating characteristic curve (ROC AUC) yielded scores of 0.879 (healthy controls) to 0.82 (PLHIV), supporting the oral microbiome contribution in the long-term vaccination outcome. The present study is the first to suggest that the oral microbiome has an impact on the durability of mucosal immunity after Covid-19 vaccination. Microbiome-targeted interventions to enhance long-term duration of mucosal vaccine immunity may be exploited.
Assuntos
Vacina BNT162 , COVID-19 , Humanos , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162/imunologia , COVID-19/prevenção & controle , Infecções por HIV , Imunoglobulina A Secretora , Saliva/imunologiaRESUMO
BACKGROUND: Immunocompromised individuals are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Whether vaccine-induced immunity in these individuals involves oral cavity, a primary site of infection, is presently unknown. METHODS: Immunocompromised patients (n = 404) and healthy controls (n = 82) participated in a prospective clinical trial (NCT04780659) encompassing two doses of the mRNA BNT162b2 vaccine. Primary immunodeficiency (PID), secondary immunodeficiencies caused by human immunodeficiency virus (HIV) infection, allogeneic hematopoietic stem cell transplantation (HSCT)/chimeric antigen receptor T cell therapy (CAR-T), solid organ transplantation (SOT), and chronic lymphocytic leukemia (CLL) patients were included. Salivary and serum immunoglobulin G (IgG) reactivities to SARS-CoV-2 spike were measured by multiplex bead-based assays and Elecsys anti-SARS-CoV-2 S assay. FINDINGS: IgG responses to SARS-CoV-2 spike antigens in saliva in HIV and HSCT/CAR-T groups were comparable to those of healthy controls after vaccination. The PID, SOT, and CLL patients had weaker responses, influenced mainly by disease parameters or immunosuppressants. Salivary responses correlated remarkably well with specific IgG titers and the neutralizing capacity in serum. Receiver operating characteristic curve analysis for the predictive power of salivary IgG yielded area under the curve (AUC) = 0.95 and positive predictive value (PPV) = 90.7% for the entire cohort after vaccination. CONCLUSIONS: Saliva conveys vaccine responses induced by mRNA BNT162b2. The predictive power of salivary spike IgG makes it highly suitable for screening vulnerable groups for revaccination. FUNDING: Knut and Alice Wallenberg Foundation, Erling Perssons family foundation, Region Stockholm, Swedish Research Council, Karolinska Institutet, Swedish Blood Cancer Foundation, PID patient organization of Sweden, Nordstjernan AB, Center for Medical Innovation (CIMED), Swedish Medical Research Council, and Stockholm County Council (ALF).
Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Hospedeiro Imunocomprometido , Imunoglobulina A Secretora , Imunoglobulina G , Estudos Prospectivos , RNA Mensageiro , SARS-CoV-2 , Saliva , Soroconversão , Glicoproteína da Espícula de CoronavírusRESUMO
Emerging research suggests gut microbiome may play a role in pancreatic cancer initiation and progression, but cultivation of the cancer microbiome remains challenging. This pilot study aims to investigate the possibility to cultivate pancreatic microbiome from pancreatic cystic lesions associated with invasive cancer. Intra-operatively acquired pancreatic cyst fluid samples showed culture-positivity mainly in the intraductal papillary mucinous neoplasm (IPMN) group of lesions. MALDI-TOF MS profiling analysis shows Gammaproteobacteria and Bacilli dominate among individual bacteria isolates. Among cultivated bacteria, Gammaproteobacteria, particularly Klebsiella pneumoniae, but also Granulicatella adiacens and Enterococcus faecalis, demonstrate consistent pathogenic properties in pancreatic cell lines tested in ex vivo co-culture models. Pathogenic properties include intracellular survival capability, cell death induction, or causing DNA double-strand breaks in the surviving cells resembling genotoxic effects. This study provides new insights into the role of the pancreatic microbiota in the intriguing link between pancreatic cystic lesions and cancer.