Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674709

RESUMO

Vascular regeneration is a complex process, additionally limited by the low regeneration potential of blood vessels. Hence, current research is focused on the design of artificial materials that combine biocompatibility with a certain rate of biodegradability and mechanical robustness. In this paper, we have introduced a scaffold material made of poly(L-lactide-co-glycolide)/poly(isosorbide sebacate) (PLGA/PISEB) fibers fabricated in the course of an electrospinning process, and confirmed its biocompatibility towards human umbilical vein endothelial cells (HUVEC). The resulting material was characterized by a bimodal distribution of fiber diameters, with the median of 1.25 µm and 4.75 µm. Genotyping of HUVEC cells collected after 48 h of incubations on the surface of PLGA/PISEB scaffolds showed a potentially pro-angiogenic expression profile, as well as anti-inflammatory effects of this material. Over the course of a 12-week-long hydrolytic degradation process, PLGA/PISEB fibers were found to swell and disintegrate, resulting in the formation of highly developed structures resembling seaweeds. It is expected that the change in the scaffold structure should have a positive effect on blood vessel regeneration, by allowing cells to penetrate the scaffold and grow within a 3D structure of PLGA/PISEB, as well as stabilizing newly-formed endothelium during hydrolytic expansion.


Assuntos
Células Endoteliais , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Engenharia Tecidual/métodos
2.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887040

RESUMO

Poly(L-lactide) is capable of self-assembly into a nematic mesophase under the influence of temperature and mechanical stresses. Therefore, subsequent poly(L-lactide) films were obtained and characterized, showing nematic liquid crystal properties both before and after degradation. Herein, we present that, by introducing ß-cyclodextrin into the polymer matrix, it is possible to obtain a chiral nematic mesophase during pressing, regardless of temperature and time. The obtained poly(L-lactide) films exhibiting liquid crystal properties were subjected to degradation tests and the influence of degradation on these properties was determined. Thermotropic phase behavior was investigated using polarized optical microscopy, X-ray diffraction, and differential scanning calorimetry. The degradation process demonstrated an influence on the liquid crystal properties of pressed polymer films. The colored planar texture of the chiral nematic mesophase, which was not observed prior to degradation in films without the addition of ß-cyclodextrin, appeared after incubation in water as a result of the entrapment of degradation products in the polymer matrix. These unusual tailor-made properties, obtained in liquid crystals in (bio)degradable polymers using a simple method, demonstrate the potential for advanced photonic applications.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Poliésteres/química , Polímeros/química
3.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209889

RESUMO

Excessive misuse of antibiotics and antimicrobials has led to a spread of microorganisms resistant to most currently used agents. The resulting global threats has driven the search for new materials with optimal antimicrobial activity and their application in various areas of our lives. In our research, we focused on the formation of composite materials produced by the dispersion of titanium(IV)-oxo complexes (TOCs) in poly(ε-caprolactone) (PCL) matrix, which exhibit optimal antimicrobial activity. TOCs, of the general formula [Ti4O2(OiBu)10(O2CR')2] (R' = PhNH2 (1), C13H9 (2)) were synthesized as a result of the direct reaction of titanium(IV) isobutoxide and 4-aminobenzoic acid or 9-fluorenecarboxylic acid. The microcrystalline powders of (1) and (2), whose structures were confirmed by infrared (IR) and Raman spectroscopy, were dispersed in PCL matrixes. In this way, the composites PCL + nTOCs (n = 5 and 20 wt.%) were produced. The structure and physicochemical properties were determined on the basis of Raman microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electron paramagnetic resonance spectroscopy (EPR), and UV-Vis diffuse reflectance spectroscopy (DRS). The degree of TOCs distribution in the polymer matrix was monitored by scanning electron microscopy (SEM). The addition of TOCs micro grains into the PCL matrix only slightly changed the thermal and mechanical properties of the composite compared to the pure PCL. Among the investigated PCL + TOCs systems, promising antibacterial properties were confirmed for samples of PCL + n(2) (n = 5, 20 wt.%) composites, which simultaneously revealed the best photocatalytic activity in the visible range.


Assuntos
Anti-Infecciosos/síntese química , Compostos Organometálicos/síntese química , Poliésteres/química , Titânio/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Varredura Diferencial de Calorimetria , Catálise , Microscopia Eletrônica de Varredura , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Processos Fotoquímicos , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Difração de Raios X
4.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203313

RESUMO

The paper presents a synthesis of poly(l-lactide) with bacteriostatic properties. This polymer was obtained by ring-opening polymerization of the lactide initiated by selected low-toxic zinc complexes, Zn[(acac)(L)H2O], where L represents N-(pyridin-4-ylmethylene) tryptophan or N-(2-pyridin-4-ylethylidene) phenylalanine. These complexes were obtained by reaction of Zn[(acac)2 H2O] and Schiff bases, the products of the condensation of amino acids and 4-pyridinecarboxaldehyde. The composition, structure, and geometry of the synthesized complexes were determined by NMR and FTIR spectroscopy, elemental analysis, and molecular modeling. Both complexes showed the geometry of a distorted trigonal bipyramid. The antibacterial and antifungal activities of both complexes were found to be much stronger than those of the primary Schiff bases. The present study showed a higher efficiency of polymerization when initiated by the obtained zinc complexes than when initiated by the zinc(II) acetylacetonate complex. The synthesized polylactide showed antibacterial properties, especially the product obtained by polymerization initiated by a zinc(II) complex with a ligand based on l-phenylalanine. The polylactide showed a particularly strong antimicrobial effect against Pseudomonas aeruginosa, Staphylococcus aureus, and Aspergillus brasiliensis. At the same time, this polymer does not exhibit fibroblast cytotoxicity.


Assuntos
Poliésteres/química , Polímeros/química , Zinco/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Aspergillus/efeitos dos fármacos , Quelantes/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
5.
Pharm Res ; 33(12): 2967-2978, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27628625

RESUMO

PURPOSE: Estradiol (E2)-loaded poly(L-lactide-co-glycolide-trimethylenecarbonate) (P(L-LA:GA:TMC)) rods with shape-memory were developed for the treatment of neurodegenerative diseases. Usefulness of the extrusion method in the obtaining process was also considered. The influence of structural and surface properties during hydrolytic degradation was developed. The possible therapeutic aspect of rods with E2 was determined. METHODS: The extruded rods were incubated in a PBS solution (pH 7.4, 37°C, 240 rpm). The amount of released E2 in vitro conditions was estimated by UV-VIS method. The following methods in the degradation of rods were applied: NMR, DSC, FTIR, GPC, SEM, and optical microscopy. Changes in water uptake and weight loss were also determined. In vivo study was performed on rats. Measurements of E2 level were performed before and after ovariectomy of rats using ELISA method. A sample of tissue adjacent to the site of the rod implantation was analysed under an optical microscope. RESULTS: A stable and steady degradation process ensured zero-order release of E2. The in vivo study indicated a significant increase in the E2 level in serum after ovariectomy. Moreover, structural and surface features indicated that the extrusion method was appropriate for obtaining E2-loaded rods. CONCLUSIONS: Shape-memory P(L-LA:GA:TMC) rods with E2 are an adequate proposal for further research in the field of neurological disorders.


Assuntos
Estradiol/administração & dosagem , Nanotubos/química , Doenças Neurodegenerativas/tratamento farmacológico , Poliésteres/química , Animais , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Estradiol/química , Estradiol/farmacocinética , Feminino , Hidrólise , Ratos Wistar , Propriedades de Superfície , Distribuição Tecidual
6.
Cardiol J ; 31(1): 124-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37519054

RESUMO

BACKGROUND: The aim of the study was to evaluate bio-functionality of a novel, proprietary balloon-expandable biological transcatheter aortic valve implantation (TAVI) system (InFlow, CardValve Consortium, Poland) in an ovine model of aortic banding. METHODS: Surgical ascending aorta banding was created in 21 sheep. Two weeks later, 18 biological valves were implanted within the model using 15-16 F InFlow TAVI systems and carotid cut-down approach. Follow-up transthoracic echocardiography was performed at 30, 90, and 180-day. At designated time, animals were euthanized and valves harvested for analysis. RESULTS: All sheep survived the banding procedure. There were 4 (22%) procedure related deaths within a 7-day period. During the observation an additional 2 sheep died. In one, the valve dislocated after the procedure - the animal was excluded. Two animals completed 30-day follow up, five 90-day follow-up and four terminal follow-up of 180 days. Valves examined via transesophageal echocardiography showed proper hemodynamic parameters without evidence of structural valve deterioration. The maximum and average flow gradients at 180 days were 31.4 (23.3-37.7) and 17.5 (13.1-20.2) mmHg, respectively. There was one case of moderate insufficiency and no case of perivalvular leaks. By histopathology, there were no inflammation, thrombosis, nor calcifications in any tested valves at long-term follow-up. Neointimal coverage of stent struts increased with time from basal part in "early" groups to nearly 3/4 of stent length in the 180-day group. The pannus tissue showed maturation that increased with time with no stenotic "collar" visible in orthotopically implanted valves. CONCLUSIONS: The study showed good hemodynamic performance, durability and biocompatibility of the novel biological THV.


Assuntos
Estenose da Valva Aórtica , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Animais , Ovinos , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Desenho de Prótese , Substituição da Valva Aórtica Transcateter/métodos , Resultado do Tratamento
7.
Materials (Basel) ; 15(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407718

RESUMO

The stent-implantation process during angioplasty procedures usually involves clamping the stent onto a catheter to a size that allows delivery to the place inside the artery. Finding the right geometrical form of the stent to ensure good functionality in the open form and to enable the clamping process is one of the key elements in the stent-design process. In the first part of the work, an original two-step procedure for stent-geometry design was proposed. This was due to the necessary selection of a geometry that would provide adequate support to the blood-vessel wall without causing damage to the vessel. Numerical simulations of the crimping and deployment processes were performed to verify the method. At the end of this stage, the optimal stent was selected for further testing. In addition, numerical simulations of selected experimental tests (catheter-crimping process, compression process) were used to verify the obtained geometrical forms. The results of experimental tests on stents produced by the microinjection method are presented. The digital image correlation (DIC) method was used to compare the results of numerical simulation and experimental tests. The two-step modeling approach was found to help select the appropriate geometry of the expanded stent, which is an extremely important step in the design of the crimping process. In the part of the paper where the results obtained by numerical simulation were compared with those gained by experiment and using the DIC method, a good compatibility of the displacement results can be observed. For both longitudinal and transverse (pinch) stent compression, the results practically coincide. The paper presents also the application of the DIC method which significantly expands the research possibilities, allowing for a detailed inspection of the deformation state and, above all, verification of local dangerous areas. This approach significantly increases the possibility of assessing the quality of the stents.

8.
Polymers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35160492

RESUMO

This work presents the results of research on the preparation of bioresorbable functional polyestercarbonates containing side carboxyl groups. These copolymers were synthesized in two ways: the classic two-step process involving the copolymerization of l-lactide and a cyclic carbonate containing a blocked side carboxylate group in the form of a benzyl ester (MTC-Bz) and its subsequent deprotection, and a new way involving the one-step copolymerization of l-lactide with this same carbonate, but containing an unprotected carboxyl group (MTC-COOH). Both reactions were carried out under identical conditions in the melt, using a specially selected zinc chelate complex, with Zn[(acac)(L)H2O] (where: L-N-(pyridin-4-ylmethylene) phenylalaninate ligand) as an initiator. The differences in the kinetics of both reactions and their courses were pictured. The reactivity of the MTC-COOH monomer without a blocking group in the studied co-polymerization was much higher, even slightly higher than l-lactide, which allowed the practically complete conversion of the comonomers in a much shorter time. The basic final properties of the obtained copolymers and the microstructures of their chains were determined. The single-step synthesis of biodegradable polyacids was much simpler. Contrary to the conventional method, this made it possible to obtain copolymers containing all carbonate units with carboxyl groups, without even traces of the heavy metals used in the deprotection of the carboxyl groups, the presence of which is known to be very difficult to completely remove from the copolymers obtained in the two-step process.

9.
J Mech Behav Biomed Mater ; 126: 105050, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959096

RESUMO

A dual-jet electrospinning was used to mix a different hydrophilicity poly(carbonate urethanes) (PCUs) nanofibers with a biodegradable poly(D,L-lactide-co-glycolide) (PDLGA) copolyester microfibers. As a result, PDLGA/PCU partially degradable nonwovens consisting of an interlaced of both components fibers were obtained. In order to examine the hydrolytic degradation process of polyester fraction, as well as changes that occurred in the mechanical properties of the whole nonwovens, gel permeation chromatography, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry and scanning electron microscopy as well as static tensile test were performed. Obtained results showed that for the introduction of more hydrophobic PCU nanofibers (ChronoSil), the process of copolyester chain scission slowed down and the erosion mechanism proceeded in bulk. Unexpectedly, even greater deceleration of PDLGA fibers degradation was observed in case of more hydrophilic PCU (HydroThane), and erosion mechanism changed to surface. Enhancement the affinity of the whole nonwoven to the water, manifested by strong water uptake, facilitated the diffusion processes of both: water and acid degradation by-products, which limited autocatalysis reactions of the hydrolysis of ester bonds. On the other hand, strength tests showed the synergy in the mechanical characteristics of both components. Presented method allows influencing the mechanism and rate of polyester degradation without changing its chemical composition and physical properties, affecting only the physical interactions between the nonwoven and the degradation environment, and thus, on diffusion processes. Obtained partially degradable materials possessed also time prolonged functional properties, compared to the copolyester-only nonwoven itself, thus could be considered as promising for biomedical applications e.g. in drug release systems, implants or surgical meshes for supporting soft tissues.


Assuntos
Nanofibras , Poliésteres , Materiais Biocompatíveis , Varredura Diferencial de Calorimetria , Hidrólise , Interações Hidrofóbicas e Hidrofílicas
10.
Int J Pharm ; 625: 122113, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35973592

RESUMO

Dual-jet electrospinning was employed to produce two-component, partially degradable drug releasing nonwovens with interlacing of poly(D,L-lactide-co-glycolide) (PDLGA) and different poly(carbonate urethanes) (PCUs). Diclofenac sodium and sirolimus were released simultaneously from the copolyester carrier. The research focused on determining of release profiles of drugs, depending on the hydrophilicity of introduced PCU nanofibers. The influence of drugs incorporation on the hydrolytic degradation of the PDLGA and mechanical properties of nonwovens was also studied. Evaluation for interaction with cells in vitro was investigated on a fibroblast cell line in cytotoxicity and surface adhesion tests. Significant changes in drugs release rate, depending on the applied PCU were observed. It was also noticed, that hydrophilicity of drugs significantly influenced the hydrolytic degradation mechanism and surface erosion of the PDLGA, as well as the tensile strength of nonwovens. Tests carried out on cells in an in vitro experiment showed that introduction of sirolimus caused a slight reduction in the viability of fibroblasts as well as a strong limitation in their capability to colonize the surface of fibers. Due to improvement of mechanical strength and the ability to controlled drugs release, the obtained material may be considered as prospect surgical mesh implant in the treatment of hernia.


Assuntos
Anti-Infecciosos/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Diclofenaco/administração & dosagem , Nanofibras/administração & dosagem , Sirolimo/administração & dosagem , Telas Cirúrgicas , Preparações de Ação Retardada , Materiais Dentários , Alicerces Teciduais
11.
Front Cardiovasc Med ; 9: 977006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36606288

RESUMO

Objectives: The aim of the study is to evaluate the functionality, durability, and temporal biocompatibility of a novel, balloon-expandable polymeric transcatheter heart valve (ATHV) system (InFlow, CardValve Consortium, Poland). Along with expanding TAVI indications, the demand for new transcatheter valves is increasing. Methods: A surgical ascending aortic banding model was created in 20 sheep. Two weeks later, 16 sheep were implanted with ATHV systems (15-16F). Three animals were euthanized after a 30-day follow-up, four animals after a 90-day follow-up, and six animals after a 180-day follow-up. A follow-up transthoracic echocardiography (TTE) was performed. Results: There was one procedure-related (6,25%) and two model-related deaths (12,5%; banding site calcification with subsequent infection originating externally from banding). TTE revealed the flow gradients (max/average) of 30,75/17,91; 32,57/19,21; and 21,34/10,63 mmHg at 30, 90, and 180 days, respectively. There were two cases of low-degree regurgitation after 180 days with no perivalvular leak observed. Histopathological analysis showed no valve degeneration at terminal follow-up with optimal healing. Small thrombi were present at the aortic wall adjacent to the base of the leaflets, and between the aortic wall and the stent in most of the valves; however, leaflets remained free from thrombi in all cases. Scanty calcifications of leaflets were reported in three animals evaluated 180 days after implantation. Conclusion: This preclinical study in the aortic banding model showed good hemodynamic performance, durability, and biocompatibility of the novel ATHV. Furthermore, regulatory studies with longer follow-ups are warranted.

12.
J Biomed Mater Res B Appl Biomater ; 110(3): 547-563, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34478207

RESUMO

The nonviable allogeneic human skin grafts might be considered as the most suitable skin substitutes in the treatment of extensive and deep burns. However, in accordance to biological security such grafts require the final sterilization prior to clinical application. The aim of the study was to verify the influence of electron beam irradiation of three selected doses: 18, 25, and 35 kGy on the extracellular matrix of human skin. Prior to sterilization, the microbiological tests were conducted and revealed contamination in all examined cases. Individual groups were subjected to single electron beam radiation sterilization at proposed doses and then subjected to microbiological tests again. The results of microbiological testing performed for all irradiation doses used were negative. Only in the control group was a growth of microorganisms observed. The FTIR spectrometry tests were conducted followed by the histological evaluation and mechanical tests. In addition, cost analysis of radiation sterilization of individual doses was performed. The results of spectroscopic analysis, mechanical tests, and histological staining showed no significant changes in composition and characteristics of tested tissues after their irradiation, in comparison to control samples. The cost analysis has shown that irradiation with 18 kGy is the most cost-effective and 35 kGy is the least favorable. However, according to biological risk reduction, the recommended sterilization dose is 35 kGy, despite the higher price compared to the other doses tested.


Assuntos
Elétrons , Transplante de Células-Tronco Hematopoéticas , Matriz Extracelular , Raios gama , Humanos , Transplante de Pele , Esterilização/métodos
13.
Biomacromolecules ; 11(4): 839-47, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20187658

RESUMO

Degradation of poly[(1,4-butylene terephthalate)-co-(1,4-butylene adipate)] (Ecoflex, BTA) monofilaments (rods) in standardized sandy soil was investigated. Changes in the microstructure and chemical composition distribution of the degraded BTA samples were evaluated and changes in the pH and salinity of postdegradation soil, as well as the soil phytotoxicity impact of the degradation products, are reported. A macroscopic and microscopic evaluation of the surface of BTA rod samples after specified periods of incubation in standardized soil indicated erosion of the surface of BTA rods starting from the fourth month of their incubation, with almost total disintegration of the incubated BTA material observed after 22 months. However, the weight loss after this period of time was about 50% and only a minor change in the M(w) of the investigated BTA samples was observed, along with a slight increase in the dispersity (from an initial 2.75 up to 4.00 after 22 months of sample incubation). The multidetector SEC and ESI-MS analysis indicated retention of aromatic chain fragments in the low molar mass fraction of the incubated sample. Phytotoxicity studies revealed no visible damage, such as necrosis and chlorosis, or other inhibitory effects, in the following plants: radish, cres, and monocotyledonous oat, indicating that the degradation products of the investigated BTA copolyester are harmless to the tested plants.


Assuntos
Ecotoxicologia , Plantas/efeitos dos fármacos , Poliésteres/toxicidade , Dióxido de Silício/análise , Poluentes do Solo/toxicidade , Solo/análise , Biodegradação Ambiental , Espectroscopia de Ressonância Magnética , Dióxido de Silício/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Testes de Toxicidade
14.
Polymers (Basel) ; 12(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327569

RESUMO

The paper presents the formation and properties of biodegradable thermoplastic blends with triple-shape memory behavior, which were obtained by the blending and extrusion of poly(l-lactide-co-glycolide) and bioresorbable aliphatic oligoesters with side hydroxyl groups: oligo (butylene succinate-co-butylene citrate) and oligo(butylene citrate). Addition of the oligoesters to poly (l-lactide-co-glycolide) reduces the glass transition temperature (Tg) and also increases the flexibility and shape memory behavior of the final blends. Among the tested blends, materials containing less than 20 wt % of oligo (butylene succinate-co-butylene citrate) seem especially promising for biomedical applications as materials for manufacturing bioresorbable implants with high flexibility and relatively good mechanical properties. These blends show compatibility, exhibiting one glass transition temperature and macroscopically uniform physical properties.

15.
Materials (Basel) ; 13(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344751

RESUMO

The use of (bio)degradable polymers, especially in medical applications, requires a proper understanding of their properties and behavior in various environments. Structural elements made of such polymers may be exposed to changing environmental conditions, which may cause defects. That is why it is so important to determine the effect of processing conditions on polymer properties and also their subsequent behavior during degradation. This paper presents original research on a specimen's damage during 70 days of hydrolytic degradation. During a standard hydrolytic degradation study of polylactide and polylactide/polyhydroxyalkanoate dumbbell-shaped specimens obtained by 3D printing with two different processing build directions, exhibited unexpected shrinkage phenomena in the last degradation series, representing approximately 50% of the length of the specimens irrespective of the printing direction. Therefore, the continuation of previous ex-ante research of advanced polymer materials is presented to identify any possible defects before they arise and to minimize the potential failures of novel polymer products during their use and also during degradation. Studies on the impact of a specific processing method, i.e., processing parameters and conditions, on the properties expressed in molar mass and thermal properties changes of specimens obtained by three-dimensional printing from polyester-based filaments, and in particular on the occurrence of unexpected shrinkage phenomena after post-processing heat treatment, are presented.

16.
Pharmaceutics ; 12(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957509

RESUMO

The selection of dressing is crucial for the wound healing process. Traditional dressings protect against contamination and mechanical damage of an injured tissue. Alternatives for standard dressings are regenerating systems containing a polymer with an incorporated active compound. The aim of this research was to obtain a biodegradable wound dressing releasing propolis in a controlled manner throughout the healing process. Dressings were obtained by electrospinning a poly(lactide-co-glycolide) copolymer (PLGA) and propolis solution. The experiment consisted of in vitro drug release studies and in vivo macroscopic treatment evaluation. In in vitro studies released active compounds, the morphology of nonwovens, chemical composition changes of polymeric material during degradation process, weight loss and water absorption were determined. For in vivo research, four domestic pigs, were used. The 21-day experiment consisted of observation of healing third-degree burn wounds supplied with PLGA 85/15 nonwovens without active compound, with 5 wt % and 10 wt % of propolis, and wounds rinsed with NaCl. The in vitro experiment showed that controlling the molar ratio of lactidyl to glycolidyl units in the PLGA copolymer gives the opportunity to change the release profile of propolis from the nonwoven. The in vivo research showed that PLGA nonwovens with propolis may be a promising dressing material in the treatment of severe burn wounds.

17.
Materials (Basel) ; 13(9)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403315

RESUMO

The need for a cost reduction of the materials derived from (bio)degradable polymers forces research development into the formation of biocomposites with cheaper fillers. As additives can be made using the post-consumer wood, generated during wood products processing, re-use of recycled waste materials in the production of biocomposites can be an environmentally friendly way to minimalize and/or utilize the amount of the solid waste. Also, bioactive materials, which possess small amounts of antimicrobial additives belong to a very attractive packaging industry solution. This paper presents a study into the biodegradation, under laboratory composting conditions, of the composites that consist of poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate)] and wood flour as a polymer matrix and natural filler, respectively. Thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy were used to evaluate the degradation progress of the obtained composites with different amounts of wood flour. The degradation products were characterized by multistage electrospray ionization mass spectrometry. Also, preliminary tests of the antimicrobial activity of selected materials with the addition of nisin were performed. The obtained results suggest that the different amount of filler has a significant influence on the degradation profile.

18.
Polymers (Basel) ; 11(3)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30960531

RESUMO

The degree of degradation of pure poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and its composites with cork incubated under industrial and laboratory composting conditions was investigated. The materials were parallelly incubated in distilled water at 70 °C as a reference experiment (abiotic condition). It was demonstrated that addition of the cork into polyester strongly affects the matrix crystallinity. It influences the composite degradation independently on the degradation environment. Moreover, the addition of the cork increases the thermal stability of the obtained composites; this was related to a smaller reduction in molar mass during processing. This phenomenon also had an influence on the composite degradation process. The obtained results suggest that the addition of cork as a natural filler in various mass ratios to the composites enables products with different life expectancies to be obtained.

19.
Int J Pharm ; 548(1): 159-172, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-29953927

RESUMO

Risperidone is applied in oral dosage formulations in the treatment of mental diseases. Current trends point toward parenteral delivery systems based on poly(lactide-co-glycolide), with wafers or rods being the more attractive option than the routinely used intramuscular suspension with microparticles. The aim of our work was to study the utility of solution casting and hot melt extrusion in the formulation of wafers and rods with risperidone based on terpolymers, namely poly(lactide-co-glycolide-co-trimethylene carbonate) and poly(lactide-co-glycolide-co-ε-caprolactone). Synthesis of the terpolymers was carried out by using a non-toxic zirconium initiator and a racemic (LL/DD) or optically active form of the lactide monomer. The delivery systems were analyzed by NMR, DSC, GPC, and SEM. The release profile was monitored by HPLC. Terpolymer chain microstructure, glass transition temperature, and morphology revealed unchanged values after formulation. Solution casting resulted in a drop in molecular weight to a smaller degree than hot melt extrusion. The presence of risperidone influenced another decrease in molecular weight. Both methods are adequate for the formulation of delivery systems based on terpolymers for prolonged release of risperidone. An adequate selection of monomer composition in terpolymers allows to control the release period. Risperidone was released in three phases, however, the burst effect was observed for poly(L-lactide-co-glycolide-co-ε-caprolactone).


Assuntos
Antipsicóticos/química , Sistemas de Liberação de Medicamentos , Poliésteres/química , Risperidona/química , Preparações de Ação Retardada/química , Composição de Medicamentos , Liberação Controlada de Fármacos
20.
Eur J Pharm Biopharm ; 132: 41-49, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30179737

RESUMO

Despite extensive development of bioresorbable drug-eluting vascular scaffolds it is still challenging to achieve controlled drug delivery. The lack of capacity for adjusting the drug dose and inadequate release behavior are one of the main reasons of the side effects. However, so far, mainly biodegradable drug-eluting coatings of metallic stents have been studied in regard to explain drug release mechanisms. The objective of this study was to develop degradable polymer coatings applicable to bioresorbable polymer-based scaffolds. Moreover, a detailed analysis of sirolimus release and scaffold degradation has been conducted. Coating layers of the same composition were applied by the same method on the surface of two different kinds of scaffolds in order to explain the effect of scaffold structure on release process. The developed coatings showed controlled release of antiproliferative agent with elimination of burst effect. However, differences in drug release profile from two kinds of scaffolds were observed. Scaffold composed of polymer with higher lactide content showed slower and bi-phasic, erosion-controlled release of sirolimus. On the contrary, sirolimus release from scaffold composed of polymer with lower content of lactide was mainly controlled by diffusion. These results demonstrate that characteristics of scaffold is another crucial factor that must be considered in further development of bioresorbable vascular scaffolds (BRS) with controlled release of antiproliferative agent.


Assuntos
Implantes Absorvíveis , Materiais Revestidos Biocompatíveis/química , Polímeros/química , Sirolimo/administração & dosagem , Liberação Controlada de Fármacos , Stents Farmacológicos , Sirolimo/química , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA