Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plants (Basel) ; 8(11)2019 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744188

RESUMO

Plant root systems are essential for sustainable agriculture, conveying resource-efficient genotypes and species with benefits to soil ecosystem functions. Targeted selection of species/genotypes depends on available root system information. Currently there is no standardized approach for comprehensive root system characterization, suggesting the need for data integration across methods and sources. Here, we combine field measured root descriptors from the classical Root Atlas series with traits from controlled-environment root imaging for 10 cover crop species to (i) detect descriptors scaling between distant experimental methods, (ii) provide traits for species classification, and (iii) discuss implications for cover crop ecosystem functions. Results revealed relation of single axes measures from root imaging (convex hull, primary-lateral length ratio) to Root Atlas field descriptors (depth, branching order). Using composite root variables (principal components) for branching, morphology, and assimilate investment traits, cover crops were classified into species with (i) topsoil-allocated large diameter rooting type, (ii) low-branched primary/shoot-born axes-dominated rooting type, and (iii) highly branched dense rooting type, with classification trait-dependent distinction according to depth distribution. Data integration facilitated identification of root classification variables to derive root-related cover crop distinction, indicating their agro-ecological functions.

2.
Front Plant Sci ; 4: 292, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23914200

RESUMO

Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for "plant functional type" identification in ecology can be applied to the classification of root systems. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. The study demonstrates that principal component based rooting types provide efficient and meaningful multi-trait classifiers. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems) is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Rooting types emerging from measured data, mainly distinguished by diameter/weight and density dominated types. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement techniques are essential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA