Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 292(26): 10883-10898, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28512127

RESUMO

Enduring host-microbiome relationships are based on adaptive strategies within a particular ecological niche. Tannerella forsythia is a dysbiotic member of the human oral microbiome that inhabits periodontal pockets and contributes to chronic periodontitis. To counteract endopeptidases from the host or microbial competitors, T. forsythia possesses a serpin-type proteinase inhibitor called miropin. Although serpins from animals, plants, and viruses have been widely studied, those from prokaryotes have received only limited attention. Here we show that miropin uses the serpin-type suicidal mechanism. We found that, similar to a snap trap, the protein transits from a metastable native form to a relaxed triggered or induced form after cleavage of a reactive-site target bond in an exposed reactive-center loop. The prey peptidase becomes covalently attached to the inhibitor, is dragged 75 Å apart, and is irreversibly inhibited. This coincides with a large conformational rearrangement of miropin, which inserts the segment upstream of the cleavage site as an extra ß-strand in a central ß-sheet. Standard serpins possess a single target bond and inhibit selected endopeptidases of particular specificity and class. In contrast, miropin uniquely blocked many serine and cysteine endopeptidases of disparate architecture and substrate specificity owing to several potential target bonds within the reactive-center loop and to plasticity in accommodating extra ß-strands of variable length. Phylogenetic studies revealed a patchy distribution of bacterial serpins incompatible with a vertical descent model. This finding suggests that miropin was acquired from the host through horizontal gene transfer, perhaps facilitated by the long and intimate association of T. forsythia with the human gingiva.


Assuntos
Proteínas de Bactérias/química , Disbiose , Gengiva/microbiologia , Microbiota , Peptídeo Hidrolases/química , Serpinas/química , Tannerella forsythia/química , Proteínas de Bactérias/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo , Estrutura Secundária de Proteína , Serpinas/metabolismo , Tannerella forsythia/metabolismo
2.
Int J Mol Sci ; 19(11)2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463379

RESUMO

It has been brought to our attention that the affiliation of Dr. Jerzy Pieczykolan at the time when he was responsible for the work described in the paper [...].

3.
Int J Mol Sci ; 18(8)2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28771178

RESUMO

In our previous work we demonstrated that a small protein called affibody can be used for a cytotoxic conjugate development. The anti-HER2 affibody was armed with one moiety of a highly potent auristatin E and specifically killed HER2-positive cancer cells with a nanomolar IC50. The aim of this study was to improve the anti-HER2 affibody conjugate by increasing its size and the number of conjugated auristatin molecules. The affibody was fused to the Fc fragment of IgG1 resulting in a dimeric construct with the molecular weight of 68 kDa, referred to as ZHER2:2891-Fc, ensuring its prolonged half-life in the blood. Due to the presence of four interchain cysteines, the fusion protein could carry four drug molecules. Notably, the in vitro tests of the improved anti-HER2 conjugate revealed that it exhibits the IC50 of 130 pM for the HER2-positive SK-BR-3 cells and 98 nM for the HER2-negative MDA-MB-231 cells. High efficacy and specificity of the auristatin conjugate based on ZHER2:2891-Fc indicate that this construct is suitable for further in vivo evaluation.


Assuntos
Aminobenzoatos , Fragmentos Fc das Imunoglobulinas , Oligopeptídeos , Proteínas Recombinantes de Fusão , Aminobenzoatos/química , Aminobenzoatos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/farmacologia , Oligopeptídeos/química , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia
4.
Int J Mol Sci ; 18(2)2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216573

RESUMO

Antibody-drug conjugates (ADCs) have recently emerged as efficient and selective cancer treatment therapeutics. Currently, alternative forms of drug carriers that can replace monoclonal antibodies are under intensive investigation. Here, a cytotoxic conjugate of an anti-HER2 (Human Epidermal Growth Factor Receptor 2) diaffibody with monomethyl-auristatin E (MMAE) is proposed as a potential anticancer therapeutic. The anti-HER2 diaffibody was based on the ZHER2:4 affibody amino acid sequence. The anti-HER2 diaffibody has been expressed as a His-tagged protein in E. coli and purified by Ni-nitrilotriacetyl (Ni-NTA) agarose chromatography. The molecule was properly folded, and the high affinity and specificity of its interaction with HER2 was confirmed by surface plasmon resonance (SPR) and flow cytometry, respectively. The (ZHER2:4)2DCS-MMAE conjugate was obtained by coupling the maleimide group linked with MMAE to cysteines, which were introduced in a drug conjugation sequence (DCS). Cytotoxicity of the conjugate was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide MTT assay and the xCELLigence Real-Time Cell Analyzer. Our experiments demonstrated that the conjugate delivered auristatin E specifically to HER2-positive tumor cells, which finally led to their death. These results indicate that the cytotoxic diaffibody conjugate is a highly potent molecule for the treatment of various types of cancer overexpressing HER2 receptors.


Assuntos
Aminobenzoatos/farmacologia , Anticorpos Monoclonais/farmacologia , Imunoconjugados/farmacologia , Neoplasias/metabolismo , Oligopeptídeos/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Aminobenzoatos/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Especificidade de Anticorpos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imunoconjugados/química , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oligopeptídeos/química , Ligação Proteica , Estabilidade Proteica , Termodinâmica , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Chem Sci ; 14(4): 869-888, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36755705

RESUMO

Periodontopathogenic Tannerella forsythia uniquely secretes six peptidases of disparate catalytic classes and families that operate as virulence factors during infection of the gums, the KLIKK-peptidases. Their coding genes are immediately downstream of novel ORFs encoding the 98-132 residue potempins (Pot) A, B1, B2, C, D and E. These are outer-membrane-anchored lipoproteins that specifically and potently inhibit the respective downstream peptidase through stable complexes that protect the outer membrane of T. forsythia, as shown in vivo. Remarkably, PotA also contributes to bacterial fitness in vivo and specifically inhibits matrix metallopeptidase (MMP) 12, a major defence component of oral macrophages, thus featuring a novel and highly-specific physiological MMP inhibitor. Information from 11 structures and high-confidence homology models showed that the potempins are distinct ß-barrels with either a five-stranded OB-fold (PotA, PotC and PotD) or an eight-stranded up-and-down fold (PotE, PotB1 and PotB2), which are novel for peptidase inhibitors. Particular loops insert like wedges into the active-site cleft of the genetically-linked peptidases to specifically block them either via a new "bilobal" or the classic "standard" mechanism of inhibition. These results discover a unique, tightly-regulated proteolytic armamentarium for virulence and competence, the KLIKK-peptidase/potempin system.

6.
J Immunother ; 39(6): 223-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27227324

RESUMO

Targeted therapy is a new type of cancer treatment that most often uses biologically active drugs attached to a monoclonal antibody. This so called antibody-drug conjugate strategy allows the use of highly toxic substances that target tumor cells specifically, leaving healthy tissues largely unaffected. Over the last few years, antibody-drug conjugates have become a powerful tool in cancer treatment. We developed and characterized a novel cytotoxic conjugate against HER2 tumors in which the antibody has been substituted with a much smaller molecule: the affibody. The conjugate is composed of the ZHER2:2891 affibody that recognizes HER2 and a highly potent cytotoxic drug auristatin E. The ZHER2:2891 molecule does not contain cysteine(s) in its amino acid sequence. We generated 3 variants of ZHER2:2891, each containing a single cysteine to allow conjugation through the maleimide group that is present in the cytotoxic component. In 2 variants, we introduced single S46C and D53C substitutions. In the third variant, a short Drug Conjugation Sequence (DCS) containing a single cysteine was introduced at the C-terminus of ZHER2:2891, resulting in ZHER2:2891-DCS. The latter variant exhibited a significantly higher conjugation yield, and therefore its cytotoxicity has been studied more thoroughly. The ZHER2:2891-DCS-MMAE conjugate killed the HER2-overexpressing SK-BR-3 and MDA-MB-453 cells efficiently (IC50 values of 5.2 and 24.8 nM, respectively). The T-47-D and MDA-MB-231 cells that express normal levels of HER2 were significantly less sensitive to the conjugate (IC50 values of 135.6 and 161.5 nM, respectively). Overall, we have demonstrated for the first time that proteins other than antibodies/antibody fragments can be successfully combined with a linker-drug module, resulting in conjugates that eliminate cancer cells selectively.


Assuntos
Adenocarcinoma/terapia , Neoplasias da Mama/terapia , Imunoterapia/métodos , Imunotoxinas/uso terapêutico , Receptor ErbB-2/metabolismo , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Aminobenzoatos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Humanos , Camundongos , Oligopeptídeos/genética , Engenharia de Proteínas , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA