Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biol ; 23(18): 6363-72, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12944465

RESUMO

We investigated the formation of X-shaped molecules consisting of joint circular minichromosomes (joint molecules) in Saccharomyces cerevisiae by two-dimensional neutral/neutral gel electrophoresis of psoralen-cross-linked DNA. The appearance of joint molecules was found to be replication dependent. The joint molecules had physical properties reminiscent of Holliday junctions or hemicatenanes, as monitored by strand displacement, branch migration, and nuclease digestion. Physical linkage of the joint molecules was detected along the entire length of the minichromosome and most likely involved newly replicated sister chromatids. Surprisingly, the formation of joint molecules was found to be independent of Rad52p as well as of other factors associated with a function in homologous recombination or in the resolution of stalled replication intermediates. These findings thus imply the existence of a nonrecombinational pathway(s) for the formation of joint molecules during the process of DNA replication or minichromosome segregation.


Assuntos
Cromossomos Fúngicos , Proteínas de Ligação a DNA/metabolismo , Fase S/fisiologia , Saccharomyces cerevisiae/citologia , Replicação do DNA/fisiologia , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Eletroforese em Gel Bidimensional , Endodesoxirribonucleases/metabolismo , Substâncias Macromoleculares , Proteína Rad52 de Recombinação e Reparo de DNA , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Methods Enzymol ; 409: 442-62, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16793417

RESUMO

Replication of the eukaryotic genome is a difficult task, as cells must coordinate chromosome replication with chromatin remodeling, DNA recombination, DNA repair, transcription, cell cycle progression, and sister chromatid cohesion. Yet, DNA replication is a potentially genotoxic process, particularly when replication forks encounter a bulge in the template: forks under these conditions may stall and restart or even break down leading to fork collapse. It is now clear that fork collapse stimulates chromosomal rearrangements and therefore represents a potential source of DNA damage. Hence, the comprehension of the mechanisms that preserve replication fork integrity or that promote fork collapse are extremely relevant for the understanding of the cellular processes controlling genome stability. Here we describe some experimental approaches that can be used to physically visualize the quality of replication forks in the yeast S. cerevisiae and to distinguish between stalled and collapsed forks.


Assuntos
Replicação do DNA , Saccharomyces cerevisiae/genética , Southern Blotting , Divisão Celular , Cromatografia em Gel , DNA Fúngico/genética , Eletroforese em Gel de Ágar , Eletroforese em Gel Bidimensional , Microscopia Eletrônica , Saccharomyces cerevisiae/citologia
3.
DNA Repair (Amst) ; 9(8): 879-88, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20541983

RESUMO

DNA double-strand breaks (DSB) were shown to occur at the replication fork barrier in the ribosomal DNA of Saccharomyces cerevisiae using 2D-gel electrophoresis. Their origin, nature and magnitude, however, have remained elusive. We quantified these DSBs and show that a surprising 14% of replicating ribosomal DNA molecules are broken at the replication fork barrier in replicating wild-type cells. This translates into an estimated steady-state level of 7-10 DSBs per cell during S-phase. Importantly, breaks detectable in wild-type and sgs1 mutant cells differ from each other in terms of origin and repair. Breaks in wild-type, which were previously reported as DSBs, are likely an artefactual consequence of nicks nearby the rRFB. Sgs1 deficient cells, in which replication fork stability is compromised, reveal a class of DSBs that are detectable only in the presence of functional Dnl4. Under these conditions, Dnl4 also limits the formation of extrachromosomal ribosomal DNA circles. Consistently, dnl4 cells displayed altered fork structures at the replication fork barrier, leading us to propose an as yet unrecognized role for Dnl4 in the maintenance of ribosomal DNA stability.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Ligases/metabolismo , Replicação do DNA/genética , DNA Ribossômico/metabolismo , Quebras de DNA de Cadeia Simples , DNA Ligase Dependente de ATP , DNA Circular/metabolismo , Eletroforese em Gel Bidimensional , RecQ Helicases/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Chromosome Res ; 15(4): 429-38, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17487564

RESUMO

In eukaryotes the ribosomal gene population shows two different states in terms of chromatin structure. One subset is organized as nucleosomes (silent copies) while the other has a non-nucleosomal configuration (active copies). Insect cells are not the exception and this bimodal distribution of ribosomal chromatin also occurs in salivary gland cells, and cells of other larval tissues, of the midge Chironomus thummi. In run-on experiments on salivary glands cells we confirmed that transcribed rRNA genes show a non-nucleosomal configuration. The proportion of rRNA genes adopting an open, non-nucleosomal configuration was found to be tissue-dependent, suggesting that the population of unfolded ribosomal chromatin in C. thummi was established during cell differentiation. We propose that cell differentiation determines the fraction of non-nucleosomal rRNA gene copies and thus defines the range of possible rRNA synthesis rates in a particular cell type. In the salivary gland the fraction of unfolded chromatin was not significantly affected when transcription was repressed. However, transcription activation by pilocarpine led to a moderate increase in this fraction. These findings indicate that, in addition to a possible increase in the number of RNA-polymerases per transcribing rDNA unit, the proportion of transcribed ribosomal genes in differentiated cells can be modulated in response to an exceptional rRNA synthesis requirement.


Assuntos
Chironomidae/genética , Cromatina/genética , Genes de Insetos , Genes de RNAr , Animais , Diferenciação Celular , Chironomidae/citologia , Chironomidae/efeitos dos fármacos , Reagentes de Ligações Cruzadas , DNA Ribossômico/genética , Dactinomicina/farmacologia , Furocumarinas , Larva/genética , Transcrição Gênica
5.
Mol Cell ; 21(1): 15-27, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16387650

RESUMO

DNA replication forks pause in front of lesions on the template, eventually leading to cytotoxic chromosomal rearrangements. The in vivo structure of damaged eukaryotic replication intermediates has been so far elusive. Combining electron microscopy (EM) and two-dimensional (2D) gel electrophoresis, we found that UV-irradiated S. cerevisiae cells uncouple leading and lagging strand replication at irreparable UV lesions, thus generating long ssDNA regions on one side of the fork. Furthermore, small ssDNA gaps accumulate along replicated duplexes, likely resulting from repriming events downstream of the lesions on both leading and lagging strands. Translesion synthesis and homologous recombination counteract gap accumulation, without affecting fork progression. The DNA damage checkpoint contributes to gap repair and maintains a replication-competent fork structure. We propose that the coordinated action of checkpoint, recombination, and translesion synthesis-mediated processes at the fork and behind the fork preserves the integrity of replicating chromosomes by allowing efficient replication restart and filling the resulting ssDNA gaps.


Assuntos
Dano ao DNA , Replicação do DNA/efeitos da radiação , DNA Fúngico/efeitos da radiação , DNA de Cadeia Simples/efeitos da radiação , Recombinação Genética , Raios Ultravioleta , Cromossomos , Reparo do DNA , DNA Fúngico/metabolismo , DNA Fúngico/ultraestrutura , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae , Moldes Genéticos
6.
Mol Cell ; 17(1): 153-9, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15629726

RESUMO

The replication checkpoint coordinates the cell cycle with DNA replication and recombination, preventing genome instability and cancer. The budding yeast Rad53 checkpoint kinase stabilizes stalled forks and replisome-fork complexes, thus preventing the accumulation of ss-DNA regions and reversed forks at collapsed forks. We searched for factors involved in the processing of stalled forks in HU-treated rad53 cells. Using the neutral-neutral two-dimensional electrophoresis technique (2D gel) and psoralen crosslinking combined with electron microscopy (EM), we found that the Exo1 exonuclease is recruited to stalled forks and, in rad53 mutants, counteracts reversed fork accumulation by generating ss-DNA intermediates. Hence, Exo1-mediated fork processing resembles the action of E. coli RecJ nuclease at damaged forks. Fork stability and replication restart are influenced by both DNA polymerase-fork association and Exo1-mediated processing. We suggest that Exo1 counteracts fork reversal by resecting newly synthesized chains and resolving the sister chromatid junctions that cause regression of collapsed forks.


Assuntos
Replicação do DNA , Exodesoxirribonucleases/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Replicação do DNA/efeitos dos fármacos , DNA Fúngico/biossíntese , DNA Fúngico/ultraestrutura , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/genética , Genes Fúngicos , Hidroxiureia/farmacologia , Microscopia Eletrônica , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Mol Cell ; 15(3): 409-21, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15304221

RESUMO

To investigate the influence of the ribosomal DNA enhancer on initiation of replication and recombination at the ribosomal array, we used yeast S. cerevisiae strains with adjacent, tagged rRNA genes. We found that the enhancer is an absolute requirement for replication fork barrier function, while it only modulates initiation of replication. Moreover, the formation of monomeric extrachromosomal ribosomal circles depends on this element. Our data indicate that DNA double-strand breaks occur at specific sites in the parental leading arm of replication forks stalled at the replication fork barrier. Additionally, nicks upstream of the replication fork barrier were visualized by nucleotide-resolution mapping. They coincide with essential sequences of the mitotic hyperrecombination site HOT1, which previously has been determined at ectopic sites. Interestingly, these nicks are strictly dependent on the replication fork blocking-protein (Fob1), but are replication independent, suggesting that intrachromosomal ribosomal DNA recombination may occur outside of S phase.


Assuntos
Replicação do DNA/fisiologia , DNA Ribossômico/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Sítios de Ligação , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , Eletroforese em Gel Bidimensional , Microscopia Eletrônica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
8.
Science ; 297(5581): 599-602, 2002 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-12142537

RESUMO

Checkpoint-mediated control of replicating chromosomes is essential for preventing cancer. In yeast, Rad53 kinase protects stalled replication forks from pathological rearrangements. To characterize the mechanisms controlling fork integrity, we analyzed replication intermediates formed in response to replication blocks using electron microscopy. At the forks, wild-type cells accumulate short single-stranded regions, which likely causes checkpoint activation, whereas rad53 mutants exhibit extensive single-stranded gaps and hemi-replicated intermediates, consistent with a lagging-strand synthesis defect. Further, rad53 cells accumulate Holliday junctions through fork reversal. We speculate that, in checkpoint mutants, abnormal replication intermediates begin to form because of uncoordinated replication and are further processed by unscheduled recombination pathways, causing genome instability.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , DNA Fúngico/metabolismo , DNA de Cadeia Simples/metabolismo , Recombinação Genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Quinase do Ponto de Checagem 2 , Reagentes de Ligações Cruzadas/farmacologia , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA de Cadeia Simples/química , Furocumarinas/farmacologia , Hidroxiureia/farmacologia , Microscopia Eletrônica , Mutação , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA