Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 47(9): 2330-2333, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486792

RESUMO

The optical delay line is a key building block for applications in photonics. It requires low loss, wide bandwidth, and small footprint. In this work, we adopt the light recycling approach based on spatial-mode multiplexing, and achieve high performance with a Mach-Zehnder interferometer (MZI)-based design, which significantly increases the fabrication error tolerance. The proposed nanophotonic delay lines allow fabrication errors of ±10 nm over the broad bandwidth of 100 nm while maintaining the excess insertion loss below 0.5 dB. It will enable power-efficient, ultralow-loss, small-footprint, and broadband optical information processing capabilities in diverse applications.

2.
Nat Nanotechnol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684806

RESUMO

Mechanical forces induced by high-speed oscillations provide an elegant way to dynamically alter the fundamental properties of materials such as refractive index, absorption coefficient and gain dynamics. Although the precise control of mechanical oscillation has been well developed in the past decades, the notion of dynamic mechanical forces has not been harnessed for developing tunable lasers. Here we demonstrate actively tunable mid-infrared laser action in group-IV nanomechanical oscillators with a compact form factor. A suspended GeSn cantilever nanobeam on a Si substrate is resonantly driven by radio-frequency waves. Electrically controlled mechanical oscillation induces elastic strain that periodically varies with time in the GeSn nanobeam, enabling actively tunable lasing emission at >2 µm wavelengths. By utilizing mechanical resonances in the radio frequency as a driving mechanism, this work presents wide-range mid-infrared tunable lasers with ultralow tuning power consumption.

3.
Nat Commun ; 11(1): 193, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31924759

RESUMO

Phonons are considered to be universal quantum transducers due to their ability to couple to a wide variety of quantum systems. Among these systems, solid-state point defect spins are known for being long-lived optically accessible quantum memories. Recently, it has been shown that inversion-symmetric defects in diamond, such as the negatively charged silicon vacancy center (SiV), feature spin qubits that are highly susceptible to strain. Here, we leverage this strain response to achieve coherent and low-power acoustic control of a single SiV spin, and perform acoustically driven Ramsey interferometry of a single spin. Our results demonstrate an efficient method of spin control for these systems, offering a path towards strong spin-phonon coupling and phonon-mediated hybrid quantum systems.

4.
Nat Commun ; 9(1): 2012, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789553

RESUMO

The uncontrolled interaction of a quantum system with its environment is detrimental for quantum coherence. For quantum bits in the solid state, decoherence from thermal vibrations of the surrounding lattice can typically only be suppressed by lowering the temperature of operation. Here, we use a nano-electro-mechanical system to mitigate the effect of thermal phonons on a spin qubit - the silicon-vacancy colour centre in diamond - without changing the system temperature. By controlling the strain environment of the colour centre, we tune its electronic levels to probe, control, and eventually suppress the interaction of its spin with the thermal bath. Strain control provides both large tunability of the optical transitions and significantly improved spin coherence. Finally, our findings indicate the possibility to achieve strong coupling between the silicon-vacancy spin and single phonons, which can lead to the realisation of phonon-mediated quantum gates and nonlinear quantum phononics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA