Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 48(3): e14, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31832687

RESUMO

We here describe a technique termed STRIDE (SensiTive Recognition of Individual DNA Ends), which enables highly sensitive, specific, direct in situ detection of single- or double-strand DNA breaks (sSTRIDE or dSTRIDE), in nuclei of single cells, using fluorescence microscopy. The sensitivity of STRIDE was tested using a specially developed CRISPR/Cas9 DNA damage induction system, capable of inducing small clusters or individual single- or double-strand breaks. STRIDE exhibits significantly higher sensitivity and specificity of detection of DNA breaks than the commonly used terminal deoxynucleotidyl transferase dUTP nick-end labeling assay or methods based on monitoring of recruitment of repair proteins or histone modifications at the damage site (e.g. γH2AX). Even individual genome site-specific DNA double-strand cuts induced by CRISPR/Cas9, as well as individual single-strand DNA scissions induced by the nickase version of Cas9, can be detected by STRIDE and precisely localized within the cell nucleus. We further show that STRIDE can detect low-level spontaneous DNA damage, including age-related DNA lesions, DNA breaks induced by several agents (bleomycin, doxorubicin, topotecan, hydrogen peroxide, UV, photosensitized reactions) and fragmentation of DNA in human spermatozoa. The STRIDE methods are potentially useful in studies of mechanisms of DNA damage induction and repair in cell lines and primary cultures, including cells with impaired repair mechanisms.


Assuntos
Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Microscopia de Fluorescência , Proteína 9 Associada à CRISPR , Linhagem Celular , Células Cultivadas , Corantes Fluorescentes , Células HeLa , Humanos , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos , Fixação de Tecidos
2.
FASEB J ; 33(2): 2301-2313, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30260704

RESUMO

DNA lesions induce recruitment and accumulation of various repair factors, resulting in formation of discrete nuclear foci. Using superresolution fluorescence microscopy as well as live cell and quantitative imaging, we demonstrate that X-ray repair cross-complementing protein 1 (XRCC1), a key factor in single-strand break and base excision repair, is recruited into nuclear bodies formed in response to replication-related single-strand breaks. Intriguingly, these bodies are assembled immediately in the vicinity of these breaks and never fully colocalize with replication foci. They are structurally organized, containing canonical promyelocytic leukemia (PML) nuclear body protein SP100 concentrated in a peripheral layer, and XRCC1 in the center. They also contain other factors, including PML, poly(ADP-ribose) polymerase 1 (PARP1), ligase IIIα, and origin recognition complex subunit 5. The breast cancer 1 and -2 C terminus domains of XRCC1 are essential for formation of these repair foci. These results reveal that XRCC1-contaning foci constitute newly recognized PML-like nuclear bodies that accrete and locally deliver essential factors for repair of single-strand DNA breaks in replication regions.-Kordon, M. M., Szczurek, A., Berniak, K., Szelest, O., Solarczyk, K., Tworzydlo, M., Wachsmann-Hogiu, S., Vaahtokari, A., Cremer, C., Pederson, T., Dobrucki, J. W. PML-like subnuclear bodies, containing XRCC1, juxtaposed to DNA replication-based single-strand breaks.


Assuntos
Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Simples , Replicação do DNA , Proteína da Leucemia Promielocítica/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Células Cultivadas , Reparo do DNA , Células HeLa , Humanos , Complexo de Reconhecimento de Origem/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Domínios Proteicos
3.
Cancer Res Commun ; 4(5): 1199-1210, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38630886

RESUMO

Homologous recombination (HR)-related gene alterations are present in a significant subset of prostate, breast, ovarian, pancreatic, lung, and colon cancers rendering these tumors as potential responders to specific DNA damaging agents. A small molecule acylfulvene prodrug, LP-184, metabolizes to an active compound by the oxidoreductase activity of enzyme prostaglandin reductase 1 (PTGR1), which is frequently elevated in multiple solid tumor types. Prior work demonstrated that cancer cell lines deficient in a spectrum of DNA damage repair (DDR) pathway genes show increased susceptibility to LP-184. Here, we investigated the potential of LP-184 in targeting multiple tumors with impaired HR function and its mechanism of action as a DNA damaging agent. LP-184 induced elevated DNA double-strand breaks in HR deficient (HRD) cancer cells. Depletion of key HR components BRCA2 or ataxia telangiectasia mutated (ATM) in cancer cells conferred up to 12-fold increased sensitivity to the LP-184. LP-184 showed nanomolar potency in a diverse range of HRD cancer models, including prostate cancer organoids, leiomyosarcoma cell lines, and patient-derived tumor graft models of lung, pancreatic, and prostate cancers. LP-184 demonstrated complete, durable tumor regression in 10 patient-derived xenograft (PDX) models of HRD triple-negative breast cancer (TNBC) including those resistant to PARP inhibitors (PARPi). LP-184 further displayed strong synergy with PARPi in ovarian and prostate cancer cell lines as well as in TNBC PDX models. These preclinical findings illustrate the potential of LP-184 as a pan-HRD cancer therapeutic. Taken together, our results support continued clinical evaluation of LP-184 in a large subset of HRD solid tumors. SIGNIFICANCE: New agents with activity against DDR-deficient solid tumors refractory to standard-of-care therapies are needed. We report multiple findings supporting the potential for LP-184, a novel alkylating agent with three FDA orphan drug designations, to fill this void clinically: strong nanomolar potency; sustained, durable regression of solid tumor xenografts; synthetic lethality with HR defects. LP-184 adult phase IA trial to assess safety in advanced solid tumors is ongoing.


Assuntos
Antineoplásicos , Recombinação Homóloga , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Recombinação Homóloga/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Feminino , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Masculino , Reparo do DNA/efeitos dos fármacos
4.
Front Cell Dev Biol ; 11: 1118716, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968210

RESUMO

Successful development of a drug candidate requires availability of robust methods that enable precise and quantitative assessment of the biological effects exerted by the molecule of interest. In case of DNA Damage Response inhibitors, the most proximal readout of their efficiency is the level of induced DNA damage, usually - DNA breaks. Here we review the methods that are currently used for the assessment of the level of DNA damage, with special attention to their specificity and sensitivity. We also discuss the most common problems and challenges related to the classic IF or IHC methods that indirectly report on the activation of DNA repair mechanisms as the downstream effects of occurrence of the DNA lesions. Finally, we highlight the advent of new tools, such as STRIDE, which have the potential to transform the landscape of DDR functional biomarkers.

5.
IEEE Trans Nanobioscience ; 15(3): 275-83, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27071184

RESUMO

The phenomenon of Förster Resonance Energy Transfer, commonly used to measure the distances between fluorophore molecules and to study interactions between fluorescent-tagged proteins in life sciences, can also be applied in nanocommunication networks to transfer information bits. The mechanism offers a relatively large throughput and very small delays, but at the same time the channel bit error rate is too high and the transmission ranges are too limited for communication purposes. In this paper, multiple donors at the transmitter side and multiple acceptors at the receiver side are considered to decrease the bit error rate. As nanoantennas, the DyLight fluorescent dyes, which are very well suited to long range nanocommunication due to their large Förster distances and high degrees of labeling, are proposed. The reported results of the recent laboratory experiments confirm efficient communication on distances over 10 nm.


Assuntos
Computadores Moleculares , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Modelos Moleculares , Nanotecnologia/métodos , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos
6.
DNA Repair (Amst) ; 37: 12-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26630398

RESUMO

Induction of local photosensitised DNA damage has been used to study recruitment of repair factors, spatial organisation and subsequent stages of the repair processes. However, the damage induced by a focused laser beam interacting with a photosensitiser may not fully reflect the types of damage and repair encountered in cells of an animal under typical conditions in vivo. We report on two characteristic stages of recruitment of XRCC1 (a protein engaged in BER and SSB repair pathways), in response to low level DNA damage induced by visible light. We demonstrate that, when just a few DNA breaks are induced in a small region of the nucleus, the recruited XRCC1 is initially distributed uniformly throughout this region, and rearranges into several small stationary foci within minutes. In contrast, when heavy damage of various types (including oxidative damage) is induced in cells pre-sensitized with a DNA-binding drug ethidium bromide, XRCC1 is also recruited but fails to rearrange from the stage of the uniform distribution to the stage of several small foci, indicating that this heavy damage interferes with the progress and completion of the repair processes. We hypothesize that that first stage may reflect recruitment of XRCC1 to poly(ADP-ribose) moieties in the region surrounding the single-strand break, while the second-binding directly to the DNA lesions. We also show that moderate damage or stress induces formation of two types of XRCC1-containing foci differing in their mobility. A large subset of DNA damage-induced XRCC1 foci is associated with a major component of PML nuclear bodies--the Sp100 protein.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Resposta ao Choque Térmico , Luz , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Núcleo Celular/metabolismo , Feminino , Humanos , Poli Adenosina Difosfato Ribose/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
7.
DNA Repair (Amst) ; 11(12): 996-1002, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23089313

RESUMO

Dynamics of DNA repair and recruitment of repair factors to damaged DNA can be studied by live cell microscopy. DNA damage is usually inflicted by a laser beam illuminating a DNA-interacting photosensitizer in a small area of the nucleus. We demonstrate that a focused beam of visible low intensity light alone can inflict local DNA damage and permit studies of DNA repair, thus avoiding potential artifacts caused by exogenous photosensitizers.


Assuntos
Cromatina/efeitos da radiação , Dano ao DNA , Luz , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Cromatina/genética , Cromatina/metabolismo , Cor , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Etídio/efeitos adversos , Imunofluorescência , Genoma Humano/efeitos da radiação , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Lasers/efeitos adversos , Estresse Oxidativo , Fosforilação , Fármacos Fotossensibilizantes/efeitos adversos , Fatores de Tempo , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA