Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 123: 8-13, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23563147

RESUMO

Harvesting of macroalgae by specially equipped boats in a shallow eutrophic lagoon produces evident sediment resuspension. To outline the environmental effects of this disturbance, we examined the quantity of fall-out and the distances travelled by sediment and macronutrients from the source of boat disturbance. Resuspended sediment fall-out (RSFO) was trapped at different distances from the boat path to determine total dry weight, total nitrogen (TN), total carbon (TC), total organic carbon (TOC), total sulphur (TS) and total phosphorus (TP). The data was analysed by principal components analysis (PCA) and linear discriminant analysis (LDA) on PCA factors. Fall-out of C, N, S and P from the plume of resuspended sediment indicated significant re-arrangement of these nutrients: RSFO dry weight and S content decreased with distance from the boat path, whereas TP increased and was the variable responsible for most discrimination at 100 m. The mass of resuspended matter was relatively large, indicating that the boats considerably reshuffle lagoon sediment.


Assuntos
Monitoramento Ambiental/métodos , Nitrogênio/análise , Fósforo/análise , Navios , Enxofre/análise , Eutrofização , Água do Mar
2.
Curr Biol ; 29(13): 2131-2144.e4, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31155353

RESUMO

Although the spatiotemporal structure of the genome is crucial to its biological function, many basic questions remain unanswered on the morphology and segregation of chromosomes. Here, we experimentally show in Escherichia coli that spatial confinement plays a dominant role in determining both the chromosome size and position. In non-dividing cells with lengths increased to 10 times normal, single chromosomes are observed to expand > 4-fold in size. Chromosomes show pronounced internal dynamics but exhibit a robust positioning where single nucleoids reside robustly at mid-cell, whereas two nucleoids self-organize at 1/4 and 3/4 positions. The cell-size-dependent expansion of the nucleoid is only modestly influenced by deletions of nucleoid-associated proteins, whereas osmotic manipulation experiments reveal a prominent role of molecular crowding. Molecular dynamics simulations with model chromosomes and crowders recapitulate the observed phenomena and highlight the role of entropic effects caused by confinement and molecular crowding in the spatial organization of the chromosome.


Assuntos
Ciclo Celular/fisiologia , Segregação de Cromossomos , Cromossomos Bacterianos/fisiologia , Escherichia coli/fisiologia , Simulação de Dinâmica Molecular
3.
Methods Mol Biol ; 1729: 203-231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29429094

RESUMO

We describe two methods for high-resolution fluorescence imaging of the positioning and mobility of E. coli chemoreceptors fused to photoconvertible fluorescent proteins. Chemoreceptors such as Tar and Tsr are transmembrane proteins expressed at high levels (thousands of copies per cell). Together with their cognate cytosolic signaling proteins, they form clusters on the plasma membrane. Theoretical models imply that the size of these clusters is an important parameter for signaling, and recent PALM imaging has revealed a broad distribution of cluster sizes. We describe experimental setups and protocols for PALM imaging in fixed cells with ~10 nm spatial precision, which allows analysis of cluster-size distributions, and localized-photoactivation single-particle tracking (LPA-SPT) in live cells at ~10 ms temporal resolution, which allows for analysis of cluster mobility.


Assuntos
Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/ultraestrutura , Receptores de Superfície Celular/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Quimiotaxia , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/metabolismo , Imageamento Tridimensional , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Microscopia de Fluorescência , Fotodegradação , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Imagem Individual de Molécula , Análise Espaço-Temporal
4.
Nat Commun ; 7: 13950, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996010

RESUMO

Nanophotonics is becoming invaluable for an expanding range of applications, from controlling the spontaneous emission rate and the directionality of quantum emitters, to reducing material requirements of solar cells by an order of magnitude. These effects are highly dependent on the near field of the nanostructure, which constitutes the evanescent fields from propagating and resonant localized modes. Although the interactions between quantum emitters and nanophotonic structures are increasingly well understood theoretically, directly imaging these interactions experimentally remains challenging. Here we demonstrate a photoactivated localization microscopy-based technique to image emitter-nanostructure interactions. For a 75 nm diameter silicon nanowire, we directly observe a confluence of emission rate enhancement, directivity modification and guided mode excitation, with strong interaction at scales up to 13 times the nanowire diameter. Furthermore, through analytical modelling we distinguish the relative contribution of these effects, as well as their dependence on emitter orientation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA