Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(5): E626-E639, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38536037

RESUMO

Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.


Assuntos
Metabolismo Energético , Estradiol , Hormônio Foliculoestimulante , Ovariectomia , Ratos Wistar , Animais , Feminino , Metabolismo Energético/efeitos dos fármacos , Ratos , Hormônio Foliculoestimulante/metabolismo , Estradiol/farmacologia , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
2.
Eur J Nutr ; 59(4): 1641-1654, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31165249

RESUMO

PURPOSE: Accumulation of visceral, but not subcutaneous, adipose tissue is highly associated with metabolic disease. Inflammation inciting from adipose tissue is commonly associated with metabolic disease risk and comorbidities. However, constituents of the immune system, lymph nodes, embedded within these adipose depots remain under-investigated. We hypothesize that, lymph nodes are inherently distinct and differentially respond to diet-induced obesity much like the adipose depots they reside in. METHODS: Adipose tissue and lymph nodes were collected from the visceral and inguinal depots of male mice fed 13 weeks of standard CHOW or high fat diet (HFD). Immune cells were isolated from tissues, counted and characterized by flow cytometry or plated for proliferative capacity following Concanavalin A stimulation. Lymph node size and fibrosis area were also characterized. RESULTS: In HFD fed mice visceral adipose tissue accumulation was associated with significant enlargement of the lymph node encased within. The subcutaneous lymph node did not change. Compared with mice fed CHOW for 13 weeks, mice fed HFD had a decline in immune cell populations and immune cell proliferative ability, as well as, exacerbated fibrosis accumulation, within the visceral, but not subcutaneous, lymph node. CONCLUSIONS: Obesity-induced chronic low-grade inflammation is associated with impaired immunity and increased susceptibility to disease. Excessive visceral adiposity and associated inflammation driven by diet likely leads to obesity-induced immune suppression by way of lymph node/lymphatic system pathophysiology.


Assuntos
Dieta Hiperlipídica/métodos , Gordura Intra-Abdominal/patologia , Linfonodos/imunologia , Linfonodos/patologia , Animais , Modelos Animais de Doenças , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritônio
3.
Horm Mol Biol Clin Investig ; 39(2)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31136298

RESUMO

Background Inflammation, induced by excessive adiposity, links obesity to disease risk yet little attention has been devoted to the lymphoid tissues embedded within adipose tissue depots. Lymph nodes are the primary site for the development of protective immunity, hence any disease process that affects these tissues will also directly impact immunity. Here we examined how obesity alters secondary lymphatic tissue structure and encapsulated immune cells. Materials and methods Four-month-old C57BL/6 male mice were fed standard rodent chow or a Western high fat diet (HFD) for 6 months. Center regions of visceral and subcutaneous lymph nodes (SQLNS) were observed via transmission electron microscopy (TEM). Results Compared with chow, HFD-induced obesity deleteriously modified the structural microarchitecture and immune cell morphology of visceral and SQLNs. In HFD mice, fibroblastic reticular cells (FRCs) were dysregulated while laying among excessive amounts of disorganized collagen (C). In addition HFD lymph nodes contained a disproportionate amount of cellular debris from damaged or dead cells, increased sinus spacing and decreased immune cell interactions. Specifically, dendritic cells (DCs) that are necessary for adaptive immune response where embedded among extracellular debris with decreased pseudopodia. Similarly, the extraneous fibrous extracellular matrix (ECM) in HFD mice limited contact between lymphocytes (LCs) causing their microvilli extensions to decrease. Discussion Overall, excessive C production within lymph nodes, driven by diet-induced obesity, creates a physical barrier that impedes proper lymph flow and cellular communication. Obesity-induced disorganization of the immune cell guidance network interrupts immune cell adhesion and consequently inhibits travel within cortex regions needed for cell interactions, survival and proliferation.


Assuntos
Tecido Adiposo/imunologia , Linfonodos/imunologia , Obesidade/imunologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Comunicação Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Imunidade , Inflamação/imunologia , Inflamação/metabolismo , Linfonodos/metabolismo , Linfonodos/patologia , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA