Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(29): 10506-10514, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35834801

RESUMO

Understanding the relationship between protein structure and experimental data is crucial for utilizing experiments to solve biochemical problems and optimizing the use of sparse experimental data for structural interpretation. Tandem mass spectrometry (MS/MS) can be used with a variety of methods to collect structural data for proteins. One example is surface-induced dissociation (SID), which is used to break apart protein complexes (via a surface collision) into intact subcomplexes and can be performed at multiple laboratory frame SID collision energies. These energy-resolved MS/MS experiments have shown that the profile of the breakages depends on the acceleration energy of the collision. It is possible to extract an appearance energy (AE) from energy-resolved mass spectrometry (ERMS) data, which shows the relative intensity of each type of subcomplex as a function of SID acceleration energy. We previously determined that these AE values for specific interfaces correlated with structural features related to interface strength. In this study, we further examined the structural relationships by developing a method to predict the full ERMS plot from the structure, rather than extracting a single value. First, we noted that for proteins with multiple interface types, we could reproduce the correct shapes of breakdown curves, further confirming previous structural hypotheses. Next, we demonstrated that interface size and energy density (measured using Rosetta) correlated with data derived from the ERMS plot (R2 = 0.71). Furthermore, based on this trend, we used native crystal structures to predict ERMS. The majority of predictions resulted in good agreement, and the average root-mean-square error was 0.20 for the 20 complexes in our data set. We also show that if additional information on cleavage as a function of collision energy could be obtained, the accuracy of predictions improved further. Finally, we demonstrated that ERMS prediction results were better for the native than for inaccurate models in 17/20 cases. An application to run this simulation has been developed in Rosetta, which is freely available for use.


Assuntos
Espectrometria de Massas em Tandem , Humanos , Simulação por Computador , Fenômenos Físicos , Proteínas/química , Espectrometria de Massas em Tandem/métodos
2.
J Appl Microbiol ; 132(2): 994-1007, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34487591

RESUMO

AIM: To detect and characterize novel lantibiotics from a collection of Bacillus spp. using a multifaceted analytical approach. METHODS AND RESULTS: A previously completed microassay identified 45 Bacillus isolates with anti-Listeria activity. The isolates were PCR screened using degenerate primers targeting conserved sequences in lanM-type lantibiotics. B. velezensis GF610 produced a PCR product whose sequence, along with genome mining and bioinformatics, guided the liquid chromatographic analysis of strain's cell-free extracts and the mass spectrometry of purified fractions. Results revealed a new amyloliquecidin variant (designated GF610) produced by the strain. Amyloliquecidin GF610 is a two-component lantibiotic with α and ß peptides having monoisotopic masses of 3026 and 2451 Da, and molecular formulae C130 H191 N35 O39 S5 and C110 H158 N26 O30 S4 , respectively. Amyloliquecidin GF610 is active against Listeria monocytogenes, Clostridium sporogenes, Clostridioides difficile, Staphylococcus aureus and Alicyclobacillus acidoterrestris with minimum inhibitory concentrations (MICs) in the range of 0.5-7.0 µmol l-1 . CONCLUSIONS: The proposed multifaceted analytical approach was valuable to provide a deep and proper characterization of a novel bacteriocin, amyloliquecidin GF610, with high antimicrobial activity against Gram-positive bacteria. SIGNIFICANCE AND IMPACT: The discovered Amyloliquecidin GF610 is potentially useful in food, agricultural or medical applications. The analytical approach followed may facilitate future discoveries of two-component lantibiotics, which are challenging compounds to detect and characterize.


Assuntos
Bacillus , Bacteriocinas , Antibacterianos/farmacologia , Bacillus/genética , Bacteriocinas/genética , Bacteriocinas/farmacologia , Biologia Computacional , Testes de Sensibilidade Microbiana
3.
Anal Chem ; 93(13): 5513-5520, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33751887

RESUMO

Native mass spectrometry (nMS), particularly in conjunction with gas-phase ion mobility spectrometry measurements, has proven useful as a structural biology tool for evaluating the stoichiometry, conformation, and topology of protein complexes. Here, we demonstrate the combination of trapped ion mobility spectrometry (TIMS) and surface-induced dissociation (SID) on a Bruker SolariX XR 15 T FT-ICR mass spectrometer for the structural analysis of protein complexes. We successfully performed SID on mobility-selected protein complexes, including the streptavidin tetramer and cholera toxin B with bound ligands. Additionally, TIMS-SID was employed on a mixture of the peptides desArg1 and desArg9 bradykinin to mobility-separate and identify the individual peptides. Importantly, results show that native-like conformations can be maintained throughout the TIMS analysis. The TIMS-SID spectra are analogous to SID spectra acquired using quadrupole mass selection, indicating little measurable, if any, structural rearrangement during mobility selection. Mobility parking was used on the ion or mobility of interest and 50-200 SID mass spectra were averaged. High-quality TIMS-SID spectra were acquired over a period of 2-10 min, comparable to or slightly longer than SID coupled with ion mobility on various instrument platforms in our laboratory. The ultrahigh resolving power of the 15 T FT-ICR allowed for the identification and relative quantification of overlapping SID fragments with the same nominal m/z based on isotope patterns, and it shows promise as a platform to probe small mass differences, such as protein/ligand binding or post-translational modifications. These results represent the potential of TIMS-SID-MS for the analysis of both protein complexes and peptides.


Assuntos
Espectrometria de Mobilidade Iônica , Proteínas , Espectrometria de Massas , Peptídeos , Estreptavidina
4.
Phys Chem Chem Phys ; 23(20): 11844-11851, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988189

RESUMO

While the strong axial U[double bond, length as m-dash]O bonds confer high stability and inertness to UO22+, it has been shown that the axial oxo ligands can be eliminated or replaced in the gas-phase using collision-induced dissociation (CID) reactions. We report here tandem mass spectrometry experiments initiated with a gas-phase complex that includes UO22+ coordinated by a 2,6-difluorobenzoate ligand. After decarboxylation to form a difluorophenide coordinated uranyl ion, [UO2(C6F2H3)]+, CID causes elimination of CO, and then CO and C2H2 in sequential dissociation steps, to leave a reactive uranium fluoride ion, [UF2(C2H)]+. Reaction of [UF2(C2H)]+ with CH3OH creates [UF2(OCH3)]+, [UF(OCH3)2]+ and [UF(OCH3)2(CH3OH)]+. Cleavage of C-O bonds within these species results in the elimination of methyl cation (CH3+). Subsequent CID steps convert [UF(OCH3)2]+ to [UO2(F)]+ and similarly, [U(OCH3)3]+ to [UO2(OCH3)]+. Our experiments show removal of both uranyl oxo ligands in "top-down" CID reactions and replacement in "bottom-up" ion-molecule and dissociation steps.

5.
Int J Mass Spectrom ; 4612021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33889055

RESUMO

We describe instrumentation for conducting tandem surface-induced dissociation (tSID) of native protein complexes on an ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The two stages of SID are accomplished with split lenses replacing the entrance lenses of the quadrupole mass filter (stage 1, referred to herein as SID-Q) and the collision cell (stage 2, Q-SID). After SID-Q, the scattered projectile ions and subcomplexes formed in transit traverse the 20 mm pre-filter prior to the mass-selecting quadrupole, providing preliminary insights into the SID fragmentation kinetics of noncovalent protein complexes. The isolated SID fragments (subcomplexes) are then fragmented by SID in the collision cell entrance lens (Q-SID), generating subcomplexes of subcomplexes. We show that the ultrahigh resolution of the FT-ICR can be used for deconvolving species overlapping in m/z, which are particularly prominent in tandem SID spectra due to the combination of symmetric charge partitioning and narrow product ion charge state distributions. Various protein complex topologies are explored, including homotetramers, homopentamers, a homohexamer, and a heterohexamer.

6.
Anal Chem ; 92(16): 11195-11203, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32700898

RESUMO

We describe a set of simple devices for surface-induced dissociation of proteins and protein complexes on three instrument platforms. All of the devices use a novel yet simple split lens geometry that is minimally invasive (requiring a few millimeters along the ion path axis) and is easier to operate than prior generations of devices. The split lens is designed to be small enough to replace the entrance lens of a Bruker FT-ICR collision cell, the dynamic range enhancement (DRE) lens of a Waters Q-IM-TOF, or the exit lens of a transfer multipole of a Thermo Scientific Extended Mass Range (EMR) Orbitrap. Despite the decrease in size and reduction in number of electrodes to 3 (from 10 to 12 in Gen 1 and ∼6 in Gen 2), we show sensitivity improvement in a variety of cases across all platforms while also maintaining SID capabilities across a wide mass and energy range. The coupling of SID, high resolution, and ion mobility is demonstrated for a variety of protein complexes of varying topologies.


Assuntos
Proteína C-Reativa/análise , Glutamato Desidrogenase/análise , Piruvato Quinase/análise , Animais , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Coelhos
7.
Environ Sci Technol ; 54(6): 3256-3266, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083469

RESUMO

Dissolved organic matter (DOM) is ubiquitous in raw drinking water and can efficiently scavenge oxidants, such as permanganate. Here, changes to DOM induced by permanganate oxidation under typical drinking water treatment conditions (6 µM, 1 h) to bulk DOM properties, DOM functional groups, and DOM chemical formulae were examined for two DOM isolate types (terrestrial and microbial). Permanganate oxidation did not mineralize DOM, rather changes were compositional in nature. Optical properties suggest that permanganate oxidation decreased DOM aromaticity (decreased SUVA-254), decreased DOM electron-donating capacity, and decreased DOM average molecular weight (increased E2/E3 ratios). Fourier-transform-infrared spectroscopy second derivative analyses revealed that permanganate does not oxidize DOM alkene groups, suggesting permanganate access to functional groups may be important. Four ionization techniques were used with ultrahigh-resolution mass spectrometry: negative and positive ion mode electrospray ionization and negative and positive ion mode laser/desorption ionization. The results from all four techniques were combined to understand changes in DOM chemical formulae. It was concluded that nitrogen-containing aromatic compounds and alkylbenzenes were oxidized by permanganate to form nitrogen-containing aliphatic compounds and benzoic acid-containing compounds. This work highlights how multiple ionization techniques coupled with UHR-MS can enable a more detailed characterization of DOM.


Assuntos
Água Potável , Purificação da Água , Compostos de Manganês , Oxirredução , Óxidos
8.
Sensors (Basel) ; 20(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952239

RESUMO

A 3D surface model of an active limestone quarry and a vegetation-covered plateau was created using unmanned aerial vehicle (UAV) technique in combination with terrestrial laser scanning (TLS). The aim of the research was to identify major fault zones that dissect the inaccessible quarry faces and to prepare a model that shows the location of these fault zones at the entire study area. An additional purpose was to calculate reserves of the four identified lithological units. It was only possible to measure faults at the lowermost two meters of the quarry faces. At the upper parts of the quarry and on the vegetation-covered plateau where no field geological information was available, remote sensing was used. Former logs of core drillings were obtained for the modelling of the spatial distribution of four lithological units representing cover beds and various quality of limestone reserves. With the comparison of core data, field measurements and remote sensing, it was possible to depict major faults. Waste material volumes and limestone reserves were calculated for five blocks that are surrounded by these faults. The paper demonstrates that, with remote sensing and with localised control field measurements, it is possible: (a) to provide all geometric data of faults and (b) to create a 3D model with fault planes even at no exposure or at hardly accessible areas. The surface model with detected faults serves as a basis for calculating geological reserves.

9.
Anal Chem ; 91(21): 14049-14057, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31584811

RESUMO

A second-generation ("Gen 2") device capable of surface-induced dissociation (SID) and collision-induced dissociation (CID) for Fourier transform ion cyclotron resonance mass spectrometry of protein complexes has been designed, simulated, fabricated, and experimentally compared to a first-generation device ("Gen 1"). The primary goals of the redesign were to (1) simplify SID by reducing the number of electrodes, (2) increase CID and SID sensitivity by lengthening the collision cell, and (3) increase the mass range of the device for analysis of larger multimeric proteins, all while maintaining the normal instrument configuration and operation. Compared to Gen 1, Gen 2 exhibits an approximately 10× increase in sensitivity in flythrough mode, 7× increase in CID sensitivity for protonated leucine enkephalin (m/z 556), and 14× increase of CID sensitivity of 53 kDa streptavidin tetramer. It also approximately doubles the useful mass range (from m/z 8000 to m/z 15 000) using a rectilinear ion trap with a smaller inscribed radius or triples it (to m/z 22 000) using a hexapole collision cell and yields a 3-10× increase in SID sensitivity. We demonstrate the increased mass range and sensitivity on a variety of model molecules spanning nearly 3 orders of magnitude in absolute mass and present examples where the high resolution of the FT-ICR is advantageous for deconvoluting overlapping SID fragments.


Assuntos
Ciclotrons , Análise de Fourier , Proteínas/análise , Eletrodos , Desenho de Equipamento , Espectrometria de Massas/instrumentação , Propriedades de Superfície
10.
Anal Chem ; 91(24): 15686-15693, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31718151

RESUMO

Knowledge of the chemical identity of metabolite molecules is critical for the understanding of the complex biological systems to which they belong. Since metabolite identities and their concentrations are often directly linked to the phenotype, such information can be used to map biochemical pathways and understand their role in health and disease. A very large number of metabolites however are still unknown; i.e., their spectroscopic signatures do not match those in existing databases, suggesting unknown molecule identification is both imperative and challenging. Although metabolites are structurally highly diverse, the majority shares a rather limited number of structural motifs, which are defined by sets of 1H and 13C chemical shifts of the same spin system. This allows one to characterize unknown metabolites by a divide-and-conquer strategy that identifies their structural motifs first. Here, we present the structural motif-based approach "SUMMIT Motif" for the de novo identification of unknown molecular structures in complex mixtures, without the need for extensive purification, using NMR in tandem with two newly curated NMR molecular structural motif metabolomics databases (MSMMDBs). For the identification of structural motif(s), first, the 1H and 13C chemical shifts of all the individual spin systems are extracted from 2D and 3D NMR spectra of the complex mixture. Next, the molecular structural motifs are identified by querying these chemical shifts against the new MSMMDBs. One database, COLMAR MSMMDB, was derived from experimental NMR chemical shifts of known metabolites taken from the COLMAR metabolomics database, while the other MSMMDB, pNMR MSMMDB, is based on predicted chemical shifts of metabolites of several existing large metabolomics databases. For molecules consisting of multiple spin systems, spin systems are connected via long-range scalar J-couplings. When this motif-based identification method was applied to the hydrophilic extract of mouse bile fluid, two unknown metabolites could be successfully identified. This approach is both accurate and efficient for the identification of unknown metabolites and hence enables the discovery of new biochemical processes and potential biomarkers.


Assuntos
Bile/metabolismo , Biomarcadores/metabolismo , Misturas Complexas/metabolismo , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Animais , Biomarcadores/análise , Misturas Complexas/análise , Bases de Dados Factuais , Camundongos
11.
J Pediatr Gastroenterol Nutr ; 68(4): 533-540, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30540706

RESUMO

OBJECTIVES: Gastrointestinal disorders, such as inflammatory bowel diseases (IBDs) and functional gastrointestinal disorders (FGIDs), involve disrupted homeostatic interactions between the microbiota and the host. Both disorders are worsened during stress, and in laboratory mice, stress exposure has been shown to change the composition of the gut microbiome. Stress-induced changes to the microbiome exacerbate intestinal inflammation and alter intestinal motility in mice. It is, however, not yet known whether microbiota-derived short-chain fatty acids (butyrate, propionate, and acetate) and their receptors contribute to this effect. METHODS: Mice were exposed to a social disruption stress, or left undisturbed as a control. After the first stress exposure, mice were orally challenged with Citrobacter rodentium or with vehicle. The levels of short-chain fatty acids (SCFAs) were measured using gas chromatography-mass spectrometry. SCFA receptors were measured via real-time polymerase chain reaction. Microbial community composition was assessed using 16S rRNA gene sequencing. RESULTS: Stress exposure reduced colonic SCFA levels. Stress exposure and C rodentium, however, significantly increased SCFA levels and changed the expression of SCFA receptors. The levels of SCFAs did not correlate with the severity of colonic inflammation, but the colonic expression of the SCFA receptor GPR41 was positively associated with inflammatory cytokines and colonic histopathology scores. The relative abundances of several taxa of colonic bacteria were significantly changed by stress exposure, including SCFA producers. CONCLUSIONS: Social stress can have a significant effect on infection-induced colonic inflammation, and stress-induced changes in microbial-produced metabolites and their receptors may be involved.


Assuntos
Ansiedade , Doenças Inflamatórias Intestinais/psicologia , Estresse Psicológico , Animais , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Anal Chem ; 89(1): 895-901, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977147

RESUMO

Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.


Assuntos
Aminoidrolases/análise , Toxina da Cólera/análise , Ciclotrons , Estreptavidina/análise , Aminoidrolases/metabolismo , Análise de Fourier , Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
13.
Int J Mol Sci ; 17(4): 439, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27023520

RESUMO

It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks ("seeds") for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn's largest moon, Titan.


Assuntos
Espectrometria de Massas , Meteoroides , Análise de Fourier , Modelos Teóricos
14.
Anal Chem ; 87(7): 3864-70, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25674812

RESUMO

A novel strategy is introduced that combines high-resolution mass spectrometry (MS) with NMR for the identification of unknown components in complex metabolite mixtures encountered in metabolomics. The approach first identifies the chemical formulas of the mixture components from accurate masses by MS and then generates all feasible structures (structural manifold) that are consistent with these chemical formulas. Next, NMR spectra of each member of the structural manifold are predicted and compared with the experimental NMR spectra in order to identify the molecular structures that match the information obtained from both the MS and NMR techniques. This combined MS/NMR approach was applied to Escherichia coli extract, where the approach correctly identified a wide range of different types of metabolites, including amino acids, nucleic acids, polyamines, nucleosides, and carbohydrate conjugates. This makes this approach, which is termed SUMMIT MS/NMR, well suited for high-throughput applications for the discovery of new metabolites in biological and biomedical mixtures, overcoming the need of experimental MS and NMR metabolite databases.


Assuntos
Bases de Dados Factuais , Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Metabolômica , Aminoácidos/análise , Aminoácidos/metabolismo , Carboidratos/análise , Escherichia coli/química , Ácidos Nucleicos/análise , Ácidos Nucleicos/metabolismo , Poliaminas/análise , Poliaminas/metabolismo
15.
Orv Hetil ; 156(35): 1396-401, 2015 Aug 30.
Artigo em Húngaro | MEDLINE | ID: mdl-26299830

RESUMO

Hans Selye, the father of the stress concept, was a giant of science of the twentieth century. Beyond his best-known work on stress, he also made several discoveries on various other fields of experimental medicine. He described and characterized various pluricausal diseases. In addition, he made pivotal contributions to the broad field of endocrinology, especially to the classification of steroids and to our better understanding of their mode of action. He developed surgical technics and experimental animal models suitable for studying the pathogenesis and prevention of human diseases. Selye was an extremely well educated, highly intelligent and disciplined individual, an original and creative scientist, an outstanding teacher, a philosopher, a prolific author, a fabulous communicator and a gifted organizer successfully establishing, developing and managing a major academic research institution, the word-famous Institute of Experimental Medicine and Surgery of the University of Montreal.


Assuntos
Academias e Institutos/história , Pesquisa Biomédica/história , Comunicação , Criatividade , Endocrinologia/história , Liderança , Faculdades de Medicina/história , Autoria , Canadá , Congressos como Assunto , História do Século XX , Hungria , Relatório de Pesquisa/história , Estresse Fisiológico
16.
Ideggyogy Sz ; 67(3-4): 87-90, 2014 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26118246

RESUMO

Science assumed in recent decades an increasingly important role in the regulatory field. Regulatory science is now regarded as established specific brunch of science. A disturbing anomaly, the emergence of fraudulent data is of major concern both in the field of research and in the regulation. Hans Selye's work on stress, on several forms of pluricausal diseases and on other experimental models came into the focus of interest on the occasion of the Selye Symposium - 2013 held in May 2013 at the Hungarian Academy of Sciences in Budapest.


Assuntos
Academias e Institutos/história , Doença/história , Síndrome de Adaptação Geral/história , Pesquisadores/história , Pesquisa/história , Estresse Fisiológico , Academias e Institutos/organização & administração , Canadá , Caráter , Doença/etiologia , Eficiência Organizacional , História do Século XX , Humanos , Hungria , Liderança , Reprodutibilidade dos Testes , Pesquisa/normas
17.
J Am Soc Mass Spectrom ; 35(6): 1101-1109, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739888

RESUMO

Ion mobility-mass spectrometry (IM-MS) has become increasingly popular with the rapid expansion of available techniques and instrumentation. To enable accuracy, standardization, and repeatability of IM-MS measurements, the community requires reliable and well-defined reference materials for calibration and tuning of the equipment. To address this need, synthetic dendrimers of high chemical and structural purity were tested on three ion mobility platforms as potential calibrants. First, synthesized dendrimers were characterized by drift tube ion mobility (DTIMS), using an Agilent 6560 IM-qTOF-MS to assess their drift tube collision cross section (DTCCS) values. Then, assessment of obtained CCS values on trapped ion mobility (TIMS) and traveling wave ion mobility (TWIMS) ion mobility platforms were compared to those found by DTIMS. Across all three systems, dendrimers were found to have high potential for m/z and ion mobility calibration in the CCS range of 160-1700 Å2. To further validate their use as calibrants, drift tube calculated CCS values for dendrimers were utilized to calibrate calculations of CCS for known standards including Agilent Tuning mix, the CCS Major mix from Waters, and SPLASH LIPIDOMIX. Additionally, structures of sodiated dendrimers were computated along with theoretical CCS values which showed good agreement with the experimental CCS values. On the basis of the results presented, we recommend the use of dendrimers as alternatives and/or complementary compounds to commonly used calibrants for ion mobility platforms.

18.
J Phys Chem A ; 117(6): 1291-8, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23312013

RESUMO

To probe the structural implications of the proline residue on its characteristic peptide fragmentation patterns, in particular its unusual cleavage at its C-terminus in formation of a b(2) ion in XxxProZzz sequences, the structures of a series of proline-containing b(2)(+) ions were studied by using action infrared multiphoton dissociation (IRMPD) spectroscopy and fragment ion hydrogen-deuterium exchange (HDX). Five different Xxx-Pro b(2)(+) ions were studied, with glycine, alanine, isoleucine, valine, or histidine in the N-terminal position. The residues selected feature different sizes, chain lengths, and gas phase basicities to explore whether the structure of the N-terminal residue influences the Xxx-Pro b(2)(+) ion structure. In proteins, the proline side chain-to-backbone attachment causes its peptide bonds to be in the cis conformation more than any other amino acid, although trans is still favored over cis. However, HP is the only b(2)(+) ion studied here that forms the diketopiperazine exclusively. The GP, AP, IP, and VP b(2)(+) ions formed from protonated tripeptide precursors predominantly featured oxazolone structures with small diketopiperazine contributions. In contrast to the b(2)(+) ions generated from tripeptides, synthetic cyclic dipeptides VP and HP were confirmed to have exclusive diketopiperazine structures.


Assuntos
Prolina/química , Medição da Troca de Deutério , Íons/química , Estrutura Molecular , Fótons , Teoria Quântica , Espectrofotometria Infravermelho
19.
Nat Commun ; 14(1): 3175, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264059

RESUMO

Concentrative nucleoside transporters (CNTs) are active nucleoside influx systems, but their in vivo roles are poorly defined. By generating CNT1 knockout (KO) mice, here we identify a role of CNT1 in the renal reabsorption of nucleosides. Deletion of CNT1 in mice increases the urinary excretion of endogenous pyrimidine nucleosides with compensatory alterations in purine nucleoside metabolism. In addition, CNT1 KO mice exhibits high urinary excretion of the nucleoside analog gemcitabine (dFdC), which results in poor tumor growth control in CNT1 KO mice harboring syngeneic pancreatic tumors. Interestingly, increasing the dFdC dose to attain an area under the concentration-time curve level equivalent to that achieved by wild-type (WT) mice rescues antitumor efficacy. The findings provide new insights into how CNT1 regulates reabsorption of endogenous and synthetic nucleosides in murine kidneys and suggest that the functional status of CNTs may account for the optimal action of pyrimidine nucleoside analog therapeutics in humans.


Assuntos
Nucleosídeos , Nucleosídeos de Pirimidina , Humanos , Camundongos , Animais , Nucleosídeos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Eliminação Renal , Proteínas de Transporte/metabolismo , Antimetabólitos , Proteínas de Transporte de Nucleosídeos/metabolismo , Rim/metabolismo
20.
Plant J ; 68(5): 800-15, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21801250

RESUMO

Polarized cell elongation is triggered by small molecule cues during development of diverse organisms. During plant reproduction, pollen interactions with the stigma result in the polar outgrowth of a pollen tube, which delivers sperm cells to the female gametophyte to effect double fertilization. In many plants, pistils stimulate pollen germination. However, in Arabidopsis, the effect of pistils on pollen germination and the pistil factors that stimulate pollen germination remain poorly characterized. Here, we demonstrate that stigma, style, and ovules in Arabidopsis pistils stimulate pollen germination. We isolated an Arabidopsis pistil extract fraction that stimulates Arabidopsis pollen germination, and employed ultra-high resolution electrospray ionization (ESI), Fourier-transform ion cyclotron resonance (FT-ICR) and MS/MS techniques to accurately determine the mass (202.126 Da) of a compound that is specifically present in this pistil extract fraction. Using the molecular formula (C10H19NOS) and tandem mass spectral fragmentation patterns of the m/z (mass to charge ratio) 202.126 ion, we postulated chemical structures, devised protocols, synthesized N-methanesulfinyl 1- and 2-azadecalins that are close structural mimics of the m/z 202.126 ion, and showed that they are sufficient to stimulate Arabidopsis pollen germination in vitro (30 µm stimulated approximately 50% germination) and elicit accession-specific response. Although N-methanesulfinyl 2-azadecalin stimulated pollen germination in three species of Lineage I of Brassicaceae, it did not induce a germination response in Sisymbrium irio (Lineage II of Brassicaceae) and tobacco, indicating that activity of the compound is not random. Our results show that Arabidopsis pistils promote germination by producing azadecalin-like molecules to ensure rapid fertilization by the appropriate pollen.


Assuntos
Arabidopsis/efeitos dos fármacos , Flores/química , Germinação/efeitos dos fármacos , Pólen/crescimento & desenvolvimento , Arabidopsis/química , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/farmacologia , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pólen/química , Pólen/efeitos dos fármacos , Quinolinas/química , Quinolinas/farmacologia , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sulfóxidos/química , Sulfóxidos/farmacologia , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA