RESUMO
AIMS/HYPOTHESIS: Type 2 diabetes is a highly heterogeneous disease for which new subgroups ('clusters') have been proposed based on disease severity: moderate age-related diabetes (MARD), moderate obesity-related diabetes (MOD), severe insulin-deficient diabetes (SIDD) and severe insulin-resistant diabetes (SIRD). It is unknown how disease severity is reflected in terms of quality of life in these clusters. Therefore, we aimed to investigate the cluster characteristics and cluster-wise evolution of quality of life in the previously defined clusters of type 2 diabetes. METHODS: We included individuals with type 2 diabetes from the Maastricht Study, who were allocated to clusters based on a nearest centroid approach. We used logistic regression to evaluate the cluster-wise association with diabetes-related complications. We plotted the evolution of HbA1c levels over time and used Kaplan-Meier curves and Cox regression to evaluate the cluster-wise time to reach adequate glycaemic control. Quality of life based on the Short Form 36 (SF-36) was also plotted over time and adjusted for age and sex using generalised estimating equations. The follow-up time was 7 years. Analyses were performed separately for people with newly diagnosed and already diagnosed type 2 diabetes. RESULTS: We included 127 newly diagnosed and 585 already diagnosed individuals. Already diagnosed people in the SIDD cluster were less likely to reach glycaemic control than people in the other clusters, with an HR compared with MARD of 0.31 (95% CI 0.22, 0.43). There were few differences in the mental component score of the SF-36 in both newly and already diagnosed individuals. In both groups, the MARD cluster had a higher physical component score of the SF-36 than the other clusters, and the MOD cluster scored similarly to the SIDD and SIRD clusters. CONCLUSIONS/INTERPRETATION: Disease severity suggested by the clusters of type 2 diabetes is not entirely reflected in quality of life. In particular, the MOD cluster does not appear to be moderate in terms of quality of life. Use of the suggested cluster names in practice should be carefully considered, as the non-neutral nomenclature may affect disease perception in individuals with type 2 diabetes and their healthcare providers.
Assuntos
Complicações do Diabetes , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Qualidade de Vida , InsulinaRESUMO
AIMS: To identify subgroups of adults with type 1 diabetes and analyse their treatment pathways and risk of diabetes-related complications over a 5-year follow-up. METHODS: We performed a k-means cluster analysis using the T1DExchange Registry (n = 6,302) to identify subgroups based on demographic and clinical characteristics. Annual reassessments linked treatment trajectories with these clusters, considering drug and technology use. Complication risks were analysed using Cox regression. RESULTS: Five clusters were identified: 1) A favourable combination of all variables (31.67 %); 2) Longer diabetes duration (22.63 %); 3) Higher HbA1c levels (13.28 %); 4) Higher BMI (15.25 %); 5) Older age at diagnosis (17.17 %). Two-thirds of patients remained in their initial cluster annually. Technology adoption showed improved glycaemic control over time. Cox proportional hazards showed different risk patterns: Cluster 1 had low complication risk; Cluster 2 had the highest risk for retinopathy, coronary artery disease and autonomic neuropathy; Cluster 3 had the highest risk for albuminuria, depression and diabetic ketoacidosis; Cluster 4 had increased risk for multiple complications; Cluster 5 had the highest risk for hypertension and severe hypoglycaemia, with elevated coronary artery disease risk. CONCLUSIONS: Clinical characteristics can identify subgroups of patients with T1DM showing differences in treatment and complications during follow-up.