Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33495359

RESUMO

Epidemic preparedness depends on our ability to predict the trajectory of an epidemic and the human behavior that drives spread in the event of an outbreak. Changes to behavior during an outbreak limit the reliability of syndromic surveillance using large-scale data sources, such as online social media or search behavior, which could otherwise supplement healthcare-based outbreak-prediction methods. Here, we measure behavior change reflected in mobile-phone call-detail records (CDRs), a source of passively collected real-time behavioral information, using an anonymously linked dataset of cell-phone users and their date of influenza-like illness diagnosis during the 2009 H1N1v pandemic. We demonstrate that mobile-phone use during illness differs measurably from routine behavior: Diagnosed individuals exhibit less movement than normal (1.1 to 1.4 fewer unique tower locations; [Formula: see text]), on average, in the 2 to 4 d around diagnosis and place fewer calls (2.3 to 3.3 fewer calls; [Formula: see text]) while spending longer on the phone (41- to 66-s average increase; [Formula: see text]) than usual on the day following diagnosis. The results suggest that anonymously linked CDRs and health data may be sufficiently granular to augment epidemic surveillance efforts and that infectious disease-modeling efforts lacking explicit behavior-change mechanisms need to be revisited.


Assuntos
Comportamento , Telefone Celular , Doenças Transmissíveis/epidemiologia , Uso do Telefone Celular , Doenças Transmissíveis/diagnóstico , Geografia , Humanos , Islândia/epidemiologia , Disseminação de Informação , Movimento , Privacidade
2.
Sci Rep ; 7(1): 11707, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916782

RESUMO

Translating the vast data generated by genomic platforms into accurate predictions of clinical outcomes is a fundamental challenge in genomic medicine. Many prediction methods face limitations in learning from the high-dimensional profiles generated by these platforms, and rely on experts to hand-select a small number of features for training prediction models. In this paper, we demonstrate how deep learning and Bayesian optimization methods that have been remarkably successful in general high-dimensional prediction tasks can be adapted to the problem of predicting cancer outcomes. We perform an extensive comparison of Bayesian optimized deep survival models and other state of the art machine learning methods for survival analysis, and describe a framework for interpreting deep survival models using a risk backpropagation technique. Finally, we illustrate that deep survival models can successfully transfer information across diseases to improve prognostic accuracy. We provide an open-source software implementation of this framework called SurvivalNet that enables automatic training, evaluation and interpretation of deep survival models.


Assuntos
Aprendizado Profundo , Genômica/métodos , Prognóstico , Software , Sobrevida , Teorema de Bayes , Conjuntos de Dados como Assunto , Humanos , Neoplasias/genética , Neoplasias/mortalidade , Redes Neurais de Computação , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA