Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e30684, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38770321

RESUMO

Upper-limb rehabilitation devices are essential in restoring and improving the motor function of hemiplegic patients. However, developing a product design that meets the needs of users is challenging. Current design tools and methods suffer from limitations such as a single model, poor synergy between integrated models, and subjective bias in analysing user needs and translating them into product attributes. To address these issues, this study proposes a new structural design decision-making model based on Behaviour Analysis (B), Failure Mode Effect Analysis (FMEA), and Teoriya Resheniya Izobreatatelskikh Zadatch (TRIZ theory). The model was developed and applied to design an upper-limb rehabilitation exoskeleton for hemiplegia. In this paper, an empirical investigation was conducted in several rehabilitation hospitals in Xuzhou City and used user journey mapping to identify potential failure points in the behaviour process. Then, the fault models were ranked according to the Fuzzy Risk Priority Number (FRPN) calculated by FMEA and used TRIZ theory to determine principles for resolving contradictions and generating creative design solutions for the product. By integrating B, FMEA, and TRIZ theory, it eliminated subjective bias in product design, improved the design decision-making process, and provided new methods and ideas for designing assistive rehabilitation devices and similar products. The framework of the proposed approach can be used in other contexts to develop effective and precise product designs that meet the needs of users.

2.
Comput Intell Neurosci ; 2023: 2052231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793706

RESUMO

The application of human factors engineering for rehabilitation robots is based on a "human-centered" design philosophy that strives to provide safe and efficient human-robot interaction training for patients rather than depending on rehabilitation therapists. Human factors engineering for rehabilitation robots is undergoing preliminary investigation. However, the depth and breadth of current research do not provide a complete human factor engineering solution for developing rehabilitation robots. This study aims to provide a systematic review of research at the intersection of rehabilitation robotics and ergonomics to understand the progress and state-of-the-art research on critical human factors, issues, and corresponding solutions for rehabilitation robots. A total of 496 relevant studies were obtained from six scientific database searches, reference searches, and citation-tracking strategies. After applying the selection criteria and reading the full text of each study, 21 studies were selected for review and classified into four categories based on their human factor objectives: implementation of high safety, implementation of lightweight and high comfort, implementation of high human-robot interaction, and performance evaluation index and system studies. Based on the results of the studies, recommendations for future research are presented and discussed.


Assuntos
Robótica , Humanos , Robótica/métodos , Previsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA