Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(3): 114, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862667

RESUMO

With advances in radioactive particle implantation in clinical practice, Iodine-125 (125I) seed brachytherapy has emerged as a promising treatment for cholangiocarcinoma (CCA), showing good prognosis; however, the underlying molecular mechanism of the therapeutic effect of 125I seed is unclear. To study the effects of 125I seed on the proliferation and apoptosis of CCA cells. CCA cell lines, RBE and HCCC-9810, were treated with reactive oxygen species (ROS) scavenger acetylcysteine (NAC) or the p53 functional inhibitor, pifithrin-α hydrobromide (PFTα). Cell counting kit-8 (CCK-8) assay, 5-bromo-2-deoxy-uridine (BrdU) staining, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry assay were performed to test the radiation-sensitivity of 125I seed toward CCA cells at different radiation doses (0.4 mCi and 0.8 mCi). 2,7-dichlorofluorescein diacetate (DCF-DA) assay, real-time quantitative polymerase chain reaction (RT-qPCR), and western blot analysis were performed to assess the effect of 125I seed on the ROS/p53 axis. A dose-dependent inhibitory effect of 125I seeds on the proliferation of CCA cells was observed. The 125I seed promoted apoptosis of CCA cells and induced the activation of the ROS/p53 pathway in a dose-dependent manner. NAC or PFTα treatment effectively reversed the stimulatory effect of 125I seed on the proliferation of CCA cells. NAC or PFTα suppressed apoptosis and p53 protein expression induced by the 125I seed. 125I seed can inhibit cell growth mainly through the apoptotic pathway. The mechanism may involve the activation of p53 and its downstream apoptotic pathway by up-regulating the level of ROS in cells.


Assuntos
Apoptose , Proliferação de Células , Colangiocarcinoma , Radioisótopos do Iodo , Espécies Reativas de Oxigênio , Proteína Supressora de Tumor p53 , Colangiocarcinoma/metabolismo , Colangiocarcinoma/radioterapia , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/radioterapia , Acetilcisteína/farmacologia , Benzotiazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
Antonie Van Leeuwenhoek ; 117(1): 81, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777900

RESUMO

A Gram-stain-negative, aerobic, non-motile, catalase- and oxidase-positive, pale orange, rod-shaped strain EF6T, was isolated from a natural wetland reserve in Hebei province, China. The strain grew at 25-37 °C (optimum, 30 °C), pH 5-9 (optimum, pH 7), and in the presence of 1.0-4.0% (w/v) NaCl (optimum, 2%). A phylogenetic analysis based on 16S rRNA gene sequence revealed that strain EF6T belongs to the genus Paracoccus, and the closest members were Paracoccus shandongensis wg2T with 98.1% similarity, Paracoccus fontiphilus MVW-1 T (97.9%), Paracoccus everestensis S8-55 T (97.7%), Paracoccus subflavus GY0581T (97.6%), Paracoccus sediminis CMB17T (97.3%), Paracoccus caeni MJ17T (97.0%), and Paracoccus angustae E6T (97.0%). The genome size of strain EF6T was 4.88 Mb, and the DNA G + C content was 65.3%. The digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between strain EF6T and the reference strains were all below the threshold limit for species delineation (< 32.8%, < 88.0%, and < 86.7%, respectively). The major fatty acids (≥ 5.0%) were summed feature 8 (86.3%, C18:1 ω6c and/or C18:1 ω7c) and C18:1 (5.0%) and the only isoprenoid quinone was Q-10. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids, five unidentified phospholipids, and an unidentified aminolipid. Strain EF6T displays notable resistance to benzoate and selenite, with higher tolerance levels (25 g/L for benzoate and 150 mM for selenite) compared to the closely related species. Genomic analysis identified six benzoate resistance genes (acdA, pcaF, fadA, pcaC, purB, and catA) and twenty selenite resistance and reduction-related genes (iscR, ssuB, ssuD, selA, selD and so on). Additionally, EF6T possesses unique genes (catA, ssuB, and ssuC) absent in the closely related species for benzoate and selenite resistance. Its robust resistance to benzoate and selenite, coupled with its genomic makeup, make EF6T a promising candidate for the remediation of both organic and inorganic pollutants. It is worth noting that the specific resistance phenotypes described above were not reported in other novel species in Paracoccus. Based on the results of biochemical, physiological, phylogenetic, and chemotaxonomic analyses, combined with comparisons of the 16S rRNA gene sequence and the whole genome sequence, strain EF6T is considered to represent a novel species of the genus Paracoccus within the family Rhodobacteraceae, for which the name Paracoccus benzoatiresistens sp. nov. is proposed. The type strain is EF6T (= GDMCC 1.3400 T = JCM 35642 T = MCCC 1K08702T).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Paracoccus , Filogenia , RNA Ribossômico 16S , Áreas Alagadas , Paracoccus/genética , Paracoccus/classificação , Paracoccus/isolamento & purificação , Paracoccus/metabolismo , Paracoccus/efeitos dos fármacos , RNA Ribossômico 16S/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/química , DNA Bacteriano/genética , China , Selenito de Sódio/metabolismo , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise , Análise de Sequência de DNA , Hibridização de Ácido Nucleico , Oxirredução , Farmacorresistência Bacteriana
3.
Luminescence ; 39(4): e4737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587084

RESUMO

The predominant method for pest control has been the use of pesticides, which have been shown to have detrimental effects on soil, freshwater, and crop quality. Therefore, the development of novel and sustainable crop protection strategies has become increasingly imperative. In this study, a novel orange-red emitting Ba2SrWO6: Sm3+ phosphor was synthesized using the high-temperature solid-state reaction. Under ultraviolet excitation, the phosphors showed obvious emission peaks at 575, 614, and 662 nm. The Ba2SrWO6: Sm3+ was used to fabricate a fluorescence film with polydimethylsiloxane (PDMS), and attracted twice as many insects as the blank control group under 365 nm ultraviolet light. This material holds great potential as a fluorescent agent for insect trapping in the pest control fields of tea, cotton, eggplant, rice, potato, grape, and other agricultural industries. Our findings provide an eco-friendly approach to pest management for the increment of food production.


Assuntos
Luminescência , Óxidos , Samário , Compostos de Cálcio , Titânio
4.
Angew Chem Int Ed Engl ; : e202410590, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888029

RESUMO

Iron-based mixed polyanion phosphate Na4Fe3(PO4)2P2O7 (NFPP) is recognized as a promising cathode for Sodium-ion Batteries (SIBs) due to its low cost and environmental friendliness. However, its inherent low conductivity and sluggish Na+ diffusion limit fast charge and low-temperature sodium storage. This study pioneers a scalable synthesis of hollow core-shelled Na4Fe2.4Ni0.6(PO4)2P2O7 with tiny-void space (THoCS-0.6Ni) via a one-step spray-drying combined with calcination process due to the different viscosity, coordination ability, molar ratios, and shrinkage rates between citric acid and polyvinylpyrrolidone. This unique structure with interconnected carbon networks ensures rapid electron transport and fast Na+ diffusion, as well as efficient space utilization for relieve volume expansion. Incorporating regulation of lattice structure by doping Ni heteroatom to effectively improve intrinsic electron and Na+ diffusion path and energy barrier, which achieves fast charge and low-temperature sodium storage. As a result, THoCS-0.6Ni exhibits superior rate capability (86.4 mAh g-1 at 25 C). Notably, THoCS-0.6Ni demonstrates exceptional cycling stability at -20 °C with a capacity of 43.6 mAh g-1 after 2500 cycles at 5 C. This work provides a universal strategy to design the hollow core-shelled structure with tiny-void space cathode materials for reversible batteries with fast-charge and low-temperature storage features.

5.
Angew Chem Int Ed Engl ; : e202407042, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004938

RESUMO

Lithium-sulfur batteries (LiSBs) with high energy density still face challenges on sluggish conversion kinetics, severe shuttle effects of lithium polysulfides (LiPSs), and low blocking feature of ordinary separators to LiPSs. To tackle these, a novel double-layer strategy to functionalize separators is proposed, which consists of Co with atomically dispersed CoN4 decorated on Ketjen black (Co/CoN4@KB) layer and an ultrathin 2D Ti3C2Tx MXene layer. The theoretical calculations and experimental results jointly demonstrate metallic Co sites provide efficient adsorption and catalytic capability for long-chain LiPSs, while CoN4 active sites facilitate the absorption of short-chain LiPSs and promote the conversion to Li2S. The stacking MXene layer serves as a microscopic barrier to further physically block and chemically anchor leaked LiPSs from the pores and gaps of the Co/CoN4@KB layer, thus preserving LiPSs within efficient anchoring-conversion reaction interfaces to balance the accumulation of "dead S" and Li2S. Consequently, with an ultralight loading of Co/CoN4@KB-MXene, the LiSBs exhibit amazing electrochemical performance even under high sulfur loading and lean electrolyte, and the outperforming performance for lithium-selenium batteries (LiSeBs) can also be achieved. This work exploits a universal and effective strategy of a double-layer functionalized separator to regulate the equilibrium adsorption-catalytic interface, enabling high-energy and long-cycle LiSBs/LiSeBs.

6.
Angew Chem Int Ed Engl ; 63(17): e202400285, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38441382

RESUMO

Low Na+ and electron diffusion kinetics severely restrain the rate capability of MoS2 as anode for sodium-ion batteries (SIBs). Slow phase transitions between 2H and 1T, and from NaxMoS2 to Mo and Na2S as well as the volume change during cycling, induce a poor cycling stability. Herein, an original Fe single atom doped MoS2 hollow multishelled structure (HoMS) is designed for the first time to address the above challenges. The Fe single atom in MoS2 promotes the electron transfer, companying with shortened charge diffusion path from unique HoMS, thereby achieving excellent rate capability. The strong adsorption with Na+ and self-catalysis of Fe single atom facilitates the reversible conversion between 2H and 1T, and from NaxMoS2 to Mo and Na2S. Moreover, the buffering effect of HoMS on volume change during cycling improves the cyclic stability. Consequently, the Fe single atom doped MoS2 quadruple-shelled sphere exhibits a high specific capacity of 213.3 mAh g-1 at an ultrahigh current density of 30 A g-1, which is superior to previously-reported results. Even at 5 A g-1, 259.4 mAh g-1 (83.68 %) was reserved after 500 cycles. Such elaborate catalytic site decorated HoMS is also promising to realize other "fast-charging" high-energy-density rechargeable batteries.

7.
Ecotoxicol Environ Saf ; 251: 114524, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634481

RESUMO

MIL-101(Fe)-based catalysts have been widely used for degradation of organic pollutants based on peroxymonosulfate (PMS) activation. Hence, a facile calcination and hydrothermal method was used in this study to prepare a MIL-101(Fe)/g-C3N4 composite catalyst with high activity and high stability for PMS activation to degrade tetracycline hydrochloride (TC) under visible-light irradiation. We clearly elucidated the mechanism involved in the MIL-101(Fe)/g-C3N4 photo Fenton-catalyzed PMS activation process by separating the PMS activation and pollutant oxidation processes. The synergetic effects of MIL-101(Fe) and g-C3N4 involved MIL-101(Fe) acting as an electron shuttle mediating electron transfer from the organic substrate to PMS, accompanied by redox cycling of the surface Fe(II)/Fe(III). Multiple experimental results indicated that PMS was bound to the surface of MIL-101(Fe)/g-C3N4 during visible irradiation and generation of sulfate radicals (SO4•-), hydroxyl radicals (•OH) and superoxide anion free radicals (•O2-) for the radical pathway and singlet oxygen (1O2) and holes (h+) for the nonradical pathway. The major degradation pathways for TC can be described as demethylation, deamination, deamidation and carbonylation. This work provides valuable information and advances the fundamental understanding needed for design and syntheses of metal-free conjugated polymers modified by metal-organic frameworks for heterogeneous photo-Fenton reactions.


Assuntos
Estruturas Metalorgânicas , Tetraciclina , Compostos Férricos , Peróxidos , Oxirredução
8.
Ecotoxicol Environ Saf ; 249: 114455, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321674

RESUMO

Cobalt-based catalysts are expected as one of the most promising peroxymonosulfate (PMS) activators for the removal of organic pollutants from industrial wastewater. However, the easy agglomeration, difficult separation, and secondary pollution of cobalt ions limit their practical application. In this study, a novel, highly efficient, reusable cobalt and nitrogen co-doped monolithic carbon foam (Co-N-CMF) was utilized to activate PMS for ultrafast pollutant degradation. Co-N-CMF (0.2 g/L) showed ultrafast catalytic kinetics and higher total organic carbon (TOC) removal efficiency. Bisphenol A, ciprofloxacin, 2,4-dichlorophenoxyacetic acid, and 2,4-dichlorophenol could be completely degraded after 2, 4, 5, and 5 min, and the TOC removal efficiencies were 77.4 %, 68.9 %, 72.8 %, and 79.8 %, respectively, corresponding to the above pollution. The sulfate radical (SO4•-) was the main reactive oxygen species in Co-N-CMF/PMS based on electron paramagnetic resonance. The ecological structure-activity relationship program analysis via the quantitative structure activity relationship analysis and phytotoxicity assessment revealed that the Co-N-CMF/PMS system demonstrates good ecological safety and ecological compatibility. The Co-N-CMF catalyst has good catalytic activity and facile recycling, which provides a fine method with excellent PMS activation capacity for 2,4-dichlorophenol elimination from simulated industrial wastewater. This study provides new insights into the development of monolithic catalysts for ultrafast wastewater treatment via PMS activation.


Assuntos
Carbono , Clorofenóis , Poluentes Ambientais , Carbono/química , Águas Residuárias , Cobalto/química , Nitrogênio , Peróxidos/química
9.
Nanotechnology ; 32(37)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34044373

RESUMO

One-dimensional metal-oxides (1D-MO) nanostructure has been regarded as one of the most promising candidates for high-performance photodetectors due to their outstanding electronic properties, low-cost and environmental stability. However, the current bottlenecks are high energy consumption and relatively low sensitivity. Here, Schottky junctions between nanotubes (NTs) and FTO were fabricated by electrospinning SnO2NTs on FTO glass substrate, and the bias voltage of SnO2NTs photodetectors was as low as ∼1.76 V, which can effectively reduce energy consumption. Additionally, for improving the response and recovery speed of SnO2NTs photodetectors, the NTs were covered with organic/inorganic hybrid perovskite. SnO2NTs/perovskite heterostructure photodetectors exhibit fast response/recovery speed (∼0.075/0.04 s), and a wide optical response range (∼220-800 nm). At the same time, the bias voltage of heterostructure photodetectors was further reduced to 0.42 V. The outstanding performance is mainly attributed to the formation of type-II heterojunctions between SnO2NTs and perovskite, which can facilitate the separation of photogenerated carriers, as well as Schottky junction between SnO2NTs and FTO, which reduce the bias voltage. All the results indicate that the rational design of 1D-MO/perovskite heterostructure is a facile and efficient way to achieve high-performance photodetectors.

10.
Ecotoxicol Environ Saf ; 220: 112381, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091184

RESUMO

Developing monolithic carbon-based catalyst with low cost, easy separation and high performance to degrade pollutants via PMS activation is crucial. In this work, a series of novel monolithic Me-CA catalysts based on biomass derived carbon aerogel were prepared by hydrothermal method using waste watermelon peel as raw material. Co-CA catalyst showed excellent performance to activate PMS for 2, 4-DCP degradation in different temperature and different water matrices. Different pollutants, such as ciprofloxacin (CIP), bisphenol A (BPA), and 2, 4-dichlorophenoxyacetic acid (2, 4-D) could also be removed in the Co-CA/PMS system. As expected, Co-CA could be easily separated from degraded solution, and show high stability and reusability for PMS activation with a lower cobalt leaching. Based on the results of the quenching tests, electron paramagnetic resonance (EPR) spectra, Chronoamperometric test (i-t curves) and electro-chemical impedance spectroscopy (EIS), the PMS activation mechanism was proposed. The phytotoxicity assessment determined by germination situation of mung bean indicated that PMS activation could eliminate the hazards of 2, 4-D. Therefore, this study provides a low cost, efficient and environmental-friendly monolithic biomass carbon aerogel catalyst for different pollutants degradation, which further advances monolithic catalyst for practical wastewater treatment.


Assuntos
Carbono/química , Cobalto/química , Recuperação e Remediação Ambiental/métodos , Peróxidos/química , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/toxicidade , Biomassa , Catálise , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Eliminação de Resíduos , Vigna/efeitos dos fármacos
11.
Water Sci Technol ; 84(12): 3871-3890, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928849

RESUMO

Metal-organic frameworks (MOFs) have unique properties and stable structures, which have been widely used as templates/precursors to prepare well developed pore structure and high specific surface area materials. In this article, an innovative and facile method of crystal reorganization was designed by using MOFs as sacrificial templates to prepare a layered double hydroxide (LDH) nano-layer sheet structure through a pseudomorphic conversion process under alkaline conditions. The obtained CoMn-LDH and CoFe-LDH catalysts broke the ligand of MOFs and reorganized the structure on the basis of retaining a high specific surface area and a large number of pores, which had higher specific surface area and well developed pore structure compared with LDH catalysts prepared by traditional methods, and thus provide more active sites to activate peroxymonosulfate (PMS). Due to the unique framework structure of MOFs, the MOF-derived CoMn-LDH and CoFe-LDH catalysts could provide more active sites to activate PMS, and achieve a 2,4-dichlorophenol degradation of 99.3% and 99.2% within 20 minutes, respectively. In addition the two LDH catalysts displayed excellent degradation performance for bisphenol A, ciprofloxacin and 2,4-dichlorophenoxyacetic acid (2,4-D). X-ray photoelectron spectroscopy indicated that the valence state transformation of metal elements participated in PMS activation. Electron paramagnetic resonance manifested that sulfate radical (SO4•-) and singlet oxygen (1O2) were the main species for degrading pollutants. In addition, after the three-cycle experiment, the CoMn-LDH and CoFe-LDH catalysts also showed long-term stability with a slight activity decrease in the third cycle. The phytotoxicity assessment determined by the germination of mung beans proved that PMS activation by MOF-derived LDH catalysts can basically eliminate the phytotoxicity of a 2,4-D solution. This research not only developed high-activity LDH catalysts for PMS activation, but also expanded the environmental applications of MOF derivants.


Assuntos
Estruturas Metalorgânicas , Clorofenóis , Hidróxidos , Peróxidos
12.
Chemistry ; 23(51): 12613-12619, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28683155

RESUMO

Three-dimensional metal carbide MXene/reduced graphene oxide hybrid nanosheets are prepared and applied as a cathode host material for lithium-sulfur batteries. The composite cathodes are obtained through a facile and effective two-step liquid-phase impregnation method. Owing to the unique 3 D layer structure and functional 2 D surfaces of MXene and reduced graphene oxide nanosheets for effective trapping of sulfur and lithium polysulfides, the MXene/reduced graphene oxide/sulfur composite cathodes deliver a high initial capacity of 1144.2 mAh g-1 at 0.5 C and a high level of capacity retention of 878.4 mAh g-1 after 300 cycles. It is demonstrated that hybrid metal carbide MXene/reduced graphene oxide nanosheets could be a promising cathode host material for lithium-sulfur batteries.

13.
Phys Chem Chem Phys ; 16(17): 7728-33, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24638079

RESUMO

Monodispersed LiFePO4 nanocrystals with diverse morphologies were successfully synthesized via a mild and controllable solvothermal approach with a mixture of ethylene glycol and oleic acid as the solvent. Morphology evolution of LiFePO4 nanoparticles from nanoplates to nanorods can be simply realized by varying the volume ratio of oleic acid to ethylene glycol. Moreover, the mechanism of competitive adsorption between ethylene glycol and oleic acid was proposed for the formation of different morphologies. Electrochemical measurements show that the LiFePO4/C nanorods have an initial discharge capacity of 155 mA h g(-1) at 0.5 C with a capacity retention of 80% at a high rate of 5 C, which confirms that LiFePO4/C nanorods exhibit excellent rate capability and cycling stability.

14.
Micromachines (Basel) ; 15(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38258236

RESUMO

The enhancement of rectification efficiency in 2.45 GHz microwave wireless weak energy transmission systems is centred on rectifier device selection. The overall rectification efficiency of traditional rectifier devices is low in weak energy density situations, failing to fulfil the commercial requirements of this region. The subthreshold swing of the emerging device TFET exceeds 60 mV/dec, which has the advantages of a large open-state current and a small off-state current in the corresponding region of the weak energy density. In view of this, this paper designs a double-gate plasma rectifier TFET with an embedded n+ heavily doped layer on the basis of a PNPN-structured TFET, where the device is simulated with the MixedMode module of Silvaco TCAD 2018, the rectification efficiency at -10 dBm is 44.12%, which is 10.61% higher than that of the PNPN-TFET, and the efficiency in the weak energy density region is generally 10% or more than that of commercial HSMS devices, showing obvious rectification advantages.

15.
Micromachines (Basel) ; 15(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38398958

RESUMO

This paper thoroughly analyses the role of drift in the sensitive region in the single-event effect (SEE), with the aim of enhancing the single-particle radiation resistance of N-type metal-oxide semiconductor field-effect transistors (MOSFETs). It proposes a design for a Si-based device structure that extends the lightly doped source-drain region of the N-channel metal-oxide semiconductor (NMOS), thereby moderating the electric field of the sensitive region. This design leads to a 15.69% decrease in the charge collected at the leaky end of the device under the standard irradiation conditions. On this basis, a device structure is further proposed to form a composite metal-oxide semiconductor (MOS) by connecting a pn junction at the lightly doped source-drain end. By adding two charge paths, the leakage collection charge is further reduced by 13.85% under standard irradiation conditions. Moreover, the deterioration of the drive current in the purely growing lightly doped source-drain region can be further improved. Simulations of single-event effects under different irradiation conditions show that the device has good resistance to single-event irradiation, and the composite MOS structure smoothly converges to a 14.65% reduction in drain collection charge between 0.2 pC/µm and 1 pC/µm Linear Energy Transfer (LET) values. The incidence position at the source-to-channel interface collects the highest charge reduction rate of 28.23%. The collecting charge reduction rate is maximum, at 17.12%, when the incidence is at a 45-degree angle towards the source.

16.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265276

RESUMO

In Inertial Confinement Fusion (ICF), the asymmetry of a hot spot is an important influence factor in implosion performance. Neutron penumbral imaging, which serves as an encoded-aperture imaging technique, is one of the most important diagnostic methods for detecting the shape of a hot spot. The detector image is a uniformly bright range surrounded by a penumbral area, which presents the strength distribution of hot spots. The present diagnostic modality employs an indirect imaging technique, necessitating the reconstruction process to be a pivotal aspect of the imaging protocol. The accuracy of imaging and the applicable range are significantly influenced by the reconstruction algorithm employed. We develop a neural network named Fast Fourier transform Neural Network (FFTNN) to reconstruct two-dimensional neutron emission images from the penumbral area of the detector images. The FFTNN architecture consists of 16 layers that include a FFT layer, convolution layer, fully connected layer, dropout layer, and reshape layer. Due to the limitations in experimental data, we propose a phenomenological method for describing hot spots to generate datasets for training neural networks. The reconstruction performance of the trained FFTNN is better than that of the traditional Wiener filtering and Lucy-Richardson algorithm on the simulated dataset, especially when the noise level is high as indicated by the evaluation metrics, such as mean squared error and structure similar index measure. This proposed neural network provides a new perspective, paving the way for integrating neutron imaging diagnosis into ICF.

17.
Adv Sci (Weinh) ; 11(3): e2306168, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37997201

RESUMO

The two-phase reaction of Na3 V2 (PO4 )3 - Na1 V2 (PO4 )3 in Na3 V2 (PO4 )3 (NVP) is hindered by low electronic and ionic conductivity. To address this problem, a surface-N-doped NVP encapsulating by N-doped carbon nanocage (N-NVP/N-CN) is rationally constructed, wherein the nitrogen is doped in both the surface crystal structure of NVP and carbon layer. The surface crystal modification decreases the energy barrier of Na+ diffusion from bulk to electrolyte, enhances intrinsic electronic conductivity, and releases lattice stress. Meanwhile, the porous architecture provides more active sites for redox reactions and shortens the diffusion path of ion. Furthermore, the new interphase of Na2 V2 (PO4 )3 is detected by in situ XRD and clarified by density functional theory (DFT) calculation with a lower energy barrier during the fast reversible electrochemical three-phase reaction of Na3 V2 (PO4 )3 - Na2 V2 (PO4 )3 - Na1 V2 (PO4 )3 . Therefore, as cathode of sodium-ion battery, the N-NVP/N-CN exhibited specific capacities of 119.7 and 75.3 mAh g-1 at 1 C and even 200 C. Amazingly, high capacities of 89.0, 86.2, and 84.6 mAh g-1 are achieved after overlong 10000 cycles at 20, 40, and 50 C, respectively. This approach provides a new idea for surface crystal modification to cast intermediate Na2 V2 (PO4 )3 phase for achieving excellent cycling stability and rate capability.

18.
Mol Biotechnol ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37702882

RESUMO

Pancreatic adenocarcinoma (PAAD) is a lethal malignancy of the gastrointestinal tract. Circular RNA, an endogenous noncoding RNA, is considered a new regulatory molecule in tumorigenesis and development. Here, we aimed to investigate the role of circPGAM1 in PAAD. The PAAD cell line HPAC was transfected with OE-circPGAM1 to overexpress circPGAM1 and treated with AZD5363 to inhibit the AKT/mTOR pathway. Simultaneously, another PAAD cell line BxPC-3 was transfected with sh-circPGAM1 to silence circPGAM1. The GEPIA database was used to determine the expression of circPGAM1 in PAAD and its association with overall and disease-free survival. CircPGAM1 expression levels were determined in cell lines using reverse transcription-quantitative PCR. The cell counting kit-8, wound healing, and transwell assays were performed to determine cell migration and invasion. The protein expression levels of phosphorylated AKT and mTOR were determined using western blotting. CircPGAM1 was overexpressed in PAAD and related to poor prognosis. Silencing circPGAM1 inhibited migration and invasion of BxPC-3 cells, and overexpression of circPGAM1 showed the opposite effects. Overall, circPGAM1 promoted the migration and invasion of PAAD cells through the AKT/mTOR axis.

19.
Open Life Sci ; 18(1): 20220538, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37070074

RESUMO

The PI3K/AKT/mTOR (phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin) pathway can be initiated by PROK1 (prokineticin 1), but its effect and mechanism of action in pancreatic carcinoma (PC) are not fully understood. In this study, we elucidated the roles of PROK1 and its related molecules in PC in vivo. PANC-1 cells with PROK1 knockdown were injected into BALB/c nude mice. The growth and weight of the tumor were monitored and measured, which was followed by TUNEL (terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling), immunohistochemical staining, and hematoxylin and eosin staining. The key proteins related to proliferation, apoptosis, and the PI3K/AKT/mTOR pathway were determined by Western blotting. We also used public databases to identify the molecules related to PROK1. The reduction of PROK1 inhibited angiopoiesis and promoted apoptosis in vivo. PCNA-1, cyclin D1, and Bcl-2 decreased considerably, while Bax and cleaved caspase-3 increased significantly after PROK1 inhibition. The PI3K/AKT/mTOR signal inhibition was also closely associated with PROK1 knockdown. The possible related molecules of PROK1, such as von Willebrand factor, were screened and considered to be involved in the aberrant activation of PI3K/AKT. In conclusion, PROK1 knockdown significantly prevented tumor growth and promoted apoptosis of human PC cells in vivo, where the PI3K/AKT/mTOR pathway was probably inhibited. Therefore, PROK1, along with its related molecules, might be important targets for PC therapy.

20.
Chem Commun (Camb) ; 58(8): 1155-1158, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34981089

RESUMO

Porous NiCo2S4@SiO2 is employed as the sulfur host. The negatively charged SiO2 can increase the charge density and conductivity of NiCo2S4 and accelerate the conversion of sulfur. The charge transfer effect would in turn reduce the electrostatic repulsion between SiO2 and negatively charged polysulfide, thereby enhancing the adsorption of polysulfides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA