RESUMO
Oxidative cyanation of aldehydes provides a promising strategy for the cyanide-free synthesis of organic nitriles. Design of robust and cost-effective catalysts is the key for this route. Herein, we designed a series of Se,S,N-tri-doped carbon nanosheets with a hierarchical porous structure (denoted as Se,S,N-CNs-x, x represents the pyrolysis temperature). It was found that the obtained Se,S,N-CNs-1000 was very selective and efficient for oxidative cyanation of various aldehydes including those containing other oxidizable groups into the corresponding nitriles using ammonia as the nitrogen resource below 100 °C. Detailed investigations revealed that the excellent performance of Se,S,N-CNs-1000 originated mainly from the graphitic-N species with lower electron density and synergistic effect between the Se, S, N, and C in the catalyst. Besides, the hierarchically porous structure could also promote the reaction. Notably, the unique feature of this metal-free catalyst is that it tolerated other oxidizable groups, and showed no activity on further reaction of the products, thereby resulting in high selectivity. As far as we know, this is the first work for the synthesis of nitriles via oxidative cyanation of aldehydes over heterogeneous metal-free catalysts.
RESUMO
Construction of N-substituted pyrrolidones from biomass-derived levulinic acid (LA) via reductive amination is a highly attractive route for biomass valorization. However, realizing this transformation using H2 as the hydrogen source under mild conditions is still very challenging. Herein, we designed porous TiO2 nanosheets-supported Pt nanoparticles (Pt/P-TiO2) as the heterogeneous catalyst. The prepared Pt/P-TiO2 was highly efficient for reductive amination of LA to produce various N-substituted pyrrolidones (34 examples) at ambient temperature and H2 pressure. Meanwhile, Pt/P-TiO2 showed good applicability for reductive amination of levulinic esters, 4-acetylbutyric acid, 2-acetylbenzoic acid, and 2-carboxybenzaldehyde. Systematic studies indicated that the strong acidity of P-TiO2 and the lower electron density of the Pt sites as well as the porous structure resulted in the excellent activity of Pt/P-TiO2.
RESUMO
Innovative valorization of naturally abundant and renewable lignocellulosic biomass is of great importance in the pursuit of a sustainable future and biobased economy. Ionic liquids (ILs) as an important kind of green solvents and functional fluids have attracted significant attention for the catalytic transformation of lignocellulosic feedstocks into a diverse range of products. Taking advantage of some unique properties of ILs with different functions, the catalytic transformation processes can be carried out more efficiently and potentially with lower environmental impacts. Also, a new product portfolio may be derived from catalytic systems with ILs as media. This review focuses on the catalytic chemical conversion of lignocellulose and its primary ingredients (i.e., cellulose, hemicellulose, and lignin) into value-added chemicals and fuel products using ILs as the reaction media. An outlook is provided at the end of this review to highlight the challenges and opportunities associated with this interesting and important area.
Assuntos
Celulose/química , Líquidos Iônicos/química , Lignina/química , Polissacarídeos/química , Energia Renovável , Catálise , Desidratação , Química Verde , Hidrogenação , HidróliseRESUMO
Stable organic nitroxyl radicals are an important class of catalysts for oxidation reactions, but their wide applications are hindered by their steric hinderance, high cost, complex operation, and separation procedures. Herein, NO2 in DMSO is shown to effectively catalyze the aerobic oxidative cleavage of C(OH)-C bonds to form a carboxylic group, and NO2 was generated inâ situ by decomposition of nitrates. A diverse range of secondary alcohols were selectively converted into acids in excellent yields in this transition-metal-free system without any additives. Preliminary results also indicate its applicability to depolymerize recalcitrant macromolecular lignin. Detail studies revealed that NO2 from nitrates promoted the reaction, and NO2 served as hydrogen acceptor and radical initiator for the tandem oxidative reaction.
RESUMO
We demonstrate a facile and versatile method to grow Ru particles uniformly on pristine few-layer graphene (FLG) in supercritical diethylamine. In particular, a large number of Ru subnanometer clusters less than 1.0 nm were observed. The particle size can be tuned by manipulating the loading content of Ru and controlling the reaction temperature. The resulting Ru/FLG showed remarkably high activity, selectivity, and reusability towards the hydrogenation of levulinic acid to γ-valerolactone. This method is flexible, and can be extended to the synthesis of a variety of other ultrafine metal particles supported on FLG.
RESUMO
The effect of water on CO2 hydrogenation to produce higher alcohols (C2-C4) was studied. Pt/Co3O4, which had not been used previously for this reaction, was applied as the heterogeneous catalyst. It was found that water and the catalyst had an excellent synergistic effect for promoting the reaction. High selectivity of C2-C4 alcohols could be achieved at 140 °C (especially with DMI (1,3-dimethyl-2-imidazolidinone) as co-solvent), which is a much lower temperature than reported previously. The catalyst could be reused at least five times without reducing the activity and selectivity. D2O and (13)CH3OH labeling experiments indicated that water involved in the reaction and promoted the reaction kinetically, and ethanol was formed via CH3OH as an intermediate.
RESUMO
The utilization of compounds from natural sources to prepare functional materials is of great importance. Herein, we describe for the first time the preparation of organic-inorganic hybrid catalysts by using natural phytic acid as building block. Zirconium phosphonate (Zr-PhyA) was synthesized by reaction of phytic acid and ZrCl4 and was obtained as a mesoporous material with pore sizes centered around 8.5â nm. Zr-PhyA was used to catalyze the mild and selective Meerwein-Ponndorf-Verley (MPV) reduction of various carbonyl compounds, e.g., of levulinic acid and its esters into γ-valerolactone. Further studies indicated that both Zr and phosphate groups contribute significantly to the excellent performance of Zr-PhyA.
RESUMO
Effective cleavage and functionalization of C(OH)-C bonds is of great importance for the production of value-added chemicals from renewable biomass resources such as carbohydrates, lignin and their derivatives. The efficiency and selectivity of oxidative cleavage of C(OH)-C bonds are hindered by their inert nature and various side reactions associated with the hydroxyl group. The oxidative conversion of secondary alcohols to produce aldehydes is particularly challenging because the generated aldehydes tend to be over-oxidized to acids or the other side products. Noble-metal based catalysts are necessary to get satisfactory aldehyde yields. Herein, for the first time, the efficient aerobic oxidative conversion of secondary aromatic alcohols into aromatic aldehydes is reported using non-noble metal catalysts and environmentally benign oxygen, without any additional base. It was found that CuI -1,10-phenanthroline (Cu-phen) complex showed outstanding performance for the reactions. The C(OH)-C bonds of a diverse array of aromatic secondary alcohols were effectively cleaved and functionalized, selectively affording aldehydes with excellent yields. Detailed mechanism study revealed a radical mediated pathway for the oxidative reaction. We believe that the findings in this work will lead to many explorations in non-noble metal catalyzed oxidative reactions.
RESUMO
Utilization of naturally occurring resources to construct functional catalytic materials is significantly important, and facile and environmental-benign strategies are highly desired to afford the materials having a specific structure and good catalytic activity. Herein, we reported an innovative deep eutectic solvent (DES)-assisted strategy to synthesize zirconium phytate with a thin nanosheet structure (denoted as Zr-Phy-DES) using plant-originated phytic acid (PhyA) as the renewable building block. This strategy was eco-friendly and adjustable owing to the designability of DESs. The Zr-Phy-DES as an acidic catalyst showed high activity on two important biomass transformations, i.e., dehydration of carbohydrates and Meerwein-Ponndorf-Verley reduction of ethyl levulinate. Interestingly, Zr-Phy-DES showed higher catalytic performance than the zirconium phytates prepared in ethylene glycol and N,N-dimethylformamide, confirming the advantage of DESs for preparing functional materials. Notably, the unique feature of this proposed strategy is that renewable catalysts are prepared in an environmental-benign solvent for efficiently catalyzing biomass transformation.
RESUMO
Selective oxidative cleavage of the C(CO)-C bond in ketones to access esters is a highly attractive strategy for upgrading ketones. However, it remains a great challenge to realize this important transformation over heterogeneous metal-free catalysts. Herein, we designed a series of porous and ultrathin N-doped carbon nanosheets (denoted as CN-X, where X represents the pyrolysis temperature) as heterogeneous metal-free catalysts. It was observed that the fabricated CN-800 could efficiently catalyze the oxidative cleavage of the C(CO)-C bond in various ketones to generate the corresponding methyl esters at 130 °C without using any additional base. Detailed investigations revealed that the higher content and electron density of the graphitic-N species contributed to the excellent performance of CN-800. Besides, the high surface area, affording active sites that are more easily accessed, could also enhance the catalytic activity. Notably, the catalysts have great potential for practical applications because of some obvious advantages, such as low cost, neutral reaction conditions, heterogeneous nature, high efficiency, and broad ketone scope. To the best of our knowledge, this is the first work on efficient synthesis of methyl esters via oxidative esterification of ketones over heterogeneous metal-free catalysts.
RESUMO
Low-temperature and selective reductive amination of carbonyl compounds is a highly promising approach to access primary amines. However, it remains a great challenge to conduct this attractive route efficiently over earth-abundant metal-based catalysts. Herein, we designed several Co-based catalysts (denoted as Co@C-N(x), where x represents the pyrolysis temperature) by the pyrolysis of the metal-organic framework ZIF-67 at different temperatures. Very interestingly, the prepared Co@C-N(800) could efficiently catalyze the reductive amination of various aldehydes/ketones to synthesize the corresponding primary amines with high yields at 35 °C. Besides non-noble metal and mild temperature, the other unique advantage of the catalyst was that the substrates with different reduction-sensitive groups could be converted into primary amines selectively because the Co-based catalyst was not active for these groups at low temperature. Systematic analysis revealed that the catalyst was composed of graphene encapsulated Co nanoparticles and atomically dispersed Co-N x sites. The Co particles promoted the hydrogenation step, while the Co-N x sites acted as acidic sites to activate the intermediate (Schiff base). The synergistic effect of metallic Co particles and Co-N x sites is crucial for the excellent performance of the catalyst Co@C-N(800). To the best of our knowledge, this is the first study on efficient synthesis of primary amines via reductive amination of carbonyl compounds over earth-abundant metal-based catalysts at low temperature (35 °C).
RESUMO
Superamphiphilic materials have great potential to enhance the mass transfer between phases in liquid-liquid catalysis due to their special affinities. Constructing superamphiphilic surfaces that possess superhydrophilic and superhydrophobic properties simultaneously has been a tough assignment. So, exploration of simple methods to prepare such materials using renewable and abundant feedstocks is highly desired. Here, we reported an effective strategy to construct superamphiphilic carbon directly from sodium lignosulfonate, which is a renewable resource from paper industry wastes. From the characterization of X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) for superamphiphilic carbon, we found that element C was responsible for the hydrophobic nature and the existence of O and S endowed the carbon with hydrophilic characteristics. Further, micro/nanohierarchical pores were found beneficial for the superamphiphilicity of carbon. Meantime, in the selective hydrogenation of styrene, phenylacetylene, and cis-stilbene in liquid-liquid systems, conversion became double using superamphiphilic carbon compared with blank results, and the yields were three times more than those in blank experiments. The reasons were that superamphiphilic carbon induced the formation of Pickering emulsions and enriched the reactants around catalysts, as concluded by the characterization of confocal laser scanning microscopy and relating contrastive experiments. This work revealed a different route to obtain superamphiphilic carbon and provided a diverse perspective to promote Pickering emulsion catalysis by the superamphiphilicity of carbon.
RESUMO
Selective oxidation of biomass-derived furan compounds to maleic acid (MA), an important bulk chemical, is a very attractive strategy for biomass transformation. However, achieving a high MA selectivity remains a great challenge. Herein, we for the first time successfully designed and fabricated Se-doped graphitic carbon nitride nanotubes with a chemical formula of C3.0N-Se0.03. The prepared C3.0N-Se0.03 was highly efficient for electrocatalytic oxidation of various biomass-derived furan compounds to generate MA. At ambient conditions, the MA yield could reach 84.2% from the electro-oxidation of furfural. Notably, the substituents on the furan ring significantly affected the selectivity to MA, following the order: carboxyl group > aldehyde group > hydroxyl group. Detailed investigation revealed that Se doping could tune the chemical structure of the materials (e.g., C3.0N-Se0.03 and g-C3N4), thus resulting in the change in catalytic mechanism. The excellent performance of C3.0N-Se0.03 originated from the suitable amount of graphitic N and its better electrochemical properties, which significantly boosted the oxidation pathway to MA. This work provides a robust and selective metal-free electrocatalyst for the sustainable synthesis of MA from oxidation of biomass-derived furan compounds.
RESUMO
Transformation of aryl alcohols into high-value functionalized aromatic compounds by selective cleavage and functionalization of the C(aryl)-C(OH) bond is of crucial importance, but very challenging by far. Herein, for the first time, we report a novel and versatile strategy for activation and functionalization of C(aryl)-C(OH) bonds by the cooperation of oxygenation and decarboxylative functionalization. A diverse range of aryl alcohol substrates were employed as arylation reagents via the cleavage of C(aryl)-C(OH) bonds and effectively converted into corresponding thioether, arene, and arylated benzoxazole products in excellent yields, in a Cu based catalytic system using O2 as the oxidant. This study offers a new way for aryl alcohol conversion and potentially offers a new opportunity to produce high-value functionalized aromatics from renewable feedstocks such as lignin which features abundant C(aryl)-C(OH) bonds in its linkages.
RESUMO
CO2 electroreduction has gained significant interest. However, fabricating cost-effective nonprecious-metal electrocatalysts that can selectively convert CO2 to a specific product remains highly challenging. Herein, Pb-based materials consisting of Pb0 and PbO confined in ordered mesoporous carbon (OMC) (Pb/PbO@OMC) were constructed for CO2 electroreduction to CO. Interestingly, the activity and selectivity of the Pb/PbO@OMC varied with the molar ratio of Pb0 /PbO. The material calcined at 800 °C (Pb/PbO@OMC-800) with a Pb0 /PbO ratio of 0.58 provided the best result with CO as the only carbon-based product, and the Faradaic efficiency of CO reached 98.3 % at a high current density of 41.3â mA cm-2 . Detailed studies indicated that Pb0 , PbO, and OMC co-operated well to enhance the performance of Pb/PbO@OMC-800, which mainly originated from the good interface between Pb0 and PbO, higher electrochemical active surface area, and faster electron transfer to form the CO2 â - intermediate.
RESUMO
Development of mild and efficient strategies for biomass conversion is of great significance, and design of advanced catalysts is crucial for biomass valorization. Herein, we designed PbS-based electrocatalysts through a surface engineering strategy via partial oxidation, and the degree of surface oxidation of PbS to PbSO4 could be easily tuned by calcination temperature. It was discovered that the prepared electrocatalysts could efficiently catalyze reduction of biomass-derived levulinic acid (LA) to γ-valerolactone (GVL) using water as the hydrogen source. Especially, the electrocatalyst calcined at 400 °C (PbS-400) showed outstanding performance with a current density of 13.5 mA cm-2 and a GVL faradaic efficiency of 78.6%, which was far higher than the best results reported up to date. Moreover, GVL was the only product from LA reduction, indicating the excellent selectivity. Mechanism investigation showed that LA was converted through electrocatalytic hydrogenation of carbonyl groups of LA and subsequent intramolecular esterification.
RESUMO
Development of efficient strategies for biomass valorization is a highly attractive topic. Herein, we conducted the first work on electrocatalytic oxidation of renewable furfural to produce the key bioactive intermediate 5-hydroxy-2(5H)-furanone (HFO). It was demonstrated that using H2O as the oxygen source and metal chalcogenides (CuS, ZnS, PbS, etc.) as electrocatalysts, the reaction could proceed efficiently, and the CuS nanosheets prepared in this work showed the best performance and provided high HFO selectivity (83.6%) and high conversion (70.2%) of furfural. In addition, the CuS electrocatalyst showed long-term stability. Mechanism investigation showed that furfural was oxidized to HFO via multistep reactions, including C-C cleavage, subsequent ring opening and oxidation, and intramolecular isomerization.
RESUMO
Arenes are widely used chemicals and essential components in liquid fuels, which are currently produced from fossil feedstocks. Here, we proposed the self-supported hydrogenolysis (SSH) of aromatic ethers to produce arenes using the hydrogen source within the reactants, and it was found that RuW alloy nanoparticles were very efficient catalyst for the reactions. This route is very attractive and distinguished from the reported studies on the cleavage of the CArâO bonds. The unique feature of this methodology is that exogenous hydrogen or other reductant is not required, and hydrogenation of aromatic rings could be avoided completely. The selectivities to arenes could reach >99.9% at complete conversion of the ethers. Moreover, lignin could also be transformed into arenes efficiently over the RuW alloy catalyst. The mechanism studies showed that the neighboring Ru and W species in the RuW alloy nanoparticles worked synergistically to accelerate the SSH reaction.
RESUMO
Guaiacol is an important feedstock for producing various high-value chemicals. However, the current production route of guaiacol relies heavily on fossil resources. Using lignin as a cheap and renewable feedstock to selectively produce guaiacol has great potential, but it is a challenge because of its heterogeneity and inert reactivity. Herein, we discovered that La(OTf)3 could catalyze the transformation of lignin with guaiacol as the only liquid product. In the reaction, La(OTf)3 catalyzed the hydrolysis of lignin ether linkages to form alkyl-syringol and alkyl-guaiacol, which further underwent decarbonization and demethoxylation to produce guaiacol with a yield of up to 25.5 wt%, and the remaining residue was solid. In the scale-up experiment, the isolated yield of guaiacol reached up to 21.2 wt%. To our knowledge, this is the first work to produce pure guaiacol selectively from lignin. The bio-guaiacol may be considered as a platform to promote lignin utilization.
RESUMO
Presented in this article are mechanical property and microstructural data for fluoride molten salt infiltrated graphite at high temperature. Four infiltration pressures (0â¯kPa, 450â¯kPa, 600â¯kPa, and 1000â¯kPa) and two kinds of graphite (IG-110 and NG-CT-10) were used during molten salt infiltration. After fluoride molten salt infiltration, compression testing and tension testing were performed at 700⯰C to determine compressive strength, tensile strength, softening coefficient, stress-strain curve, and absorbed energy. Utilizing scanning electron microscopy (SEM) applied to fracture fragments, SEM micrographs for the fracture surface of molten salt infiltrated graphite and virgin graphite were determined.