RESUMO
Members of the interleukin (IL) family are closely linked to cancer development and progression. However, research on the prognosis of colorectal cancer (CRC) related to IL is still lacking. This study investigated new CRC prognostic markers and offered new insights for CRC prognosis and treatment. CRC-related data and IL gene data were collected from public databases. Sample clustering was done with the NMF package to divide samples into different subtypes. Differential, enrichment, survival, and immune analyses were conducted on subtypes. A prognostic model was constructed using regression analysis. Drug sensitivity analysis was performed using GDSC database. Western blot analysis was performed to assess the effect of IL-7 on the JAK/STAT signaling pathway. Flow cytometry was used to examine the impact of IL-7 on CD8+ T cell apoptosis. Two CRC subtypes based on IL-associated genes were obtained. Cluster 1 had a higher survival rate than cluster 2, and they showed differences in some immune levels. The two clusters were mainly enriched in the JAK-STAT signaling pathway, T helper 17 cell differentiation, and the IL-17 signaling pathway. An 11-gene signature was built, and risk score was an independent prognosticator for CRC. The low-risk group showed a higher sensitivity to nine common targeted anticancer drugs. Western blot and flow cytometry results demonstrated that IL-7 could phosphorylate STAT5 and promote survival of CD8+ T cells. In conclusion, this study divided CRC samples into two IL-associated subtypes and obtained an 11-gene signature. In addition, targeted drugs that may improve the prognosis of patients with CRC were identified. These findings are of paramount importance for patient prognosis and CRC treatment.NEW & NOTEWORTHY We identified two clusters with significant survival differences in colorectal cancer (CRC) based on interleukin-related genes, constructed an 11-gene risk score model that can independently predict the prognosis of CRC, and explored some targeted drugs that may improve the prognosis of patients with CRC. The results of this study have important implications for the prognosis and treatment of CRC.
RESUMO
In recent years, Bisphenol S (BPS) has increasingly been used as an alternative to Bisphenol A (BPA) in food, paper, and personal care products. It is imperative to clarify the relationship between BPS and tumors in order to treat and prevent diseases. This study discovered a new method for predicting tumor correlations between BPS interactive genes. According to analyses conducted by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, interactive genes were primarily found in gastric cancer. Based on gene-targeted prediction and molecular docking, BPS appears to exert potential gastric cancer-causing effects through estrogen receptor 1 (ESR1). In addition, gastric cancer patients' prognosis could be accurately predicted by a bisphenol-based prognostic prediction model. Subsequently, the proliferation and migration abilities of gastric cancer cells were further demonstrated to be significantly enhanced by BPS. Similarly, molecular docking analysis revealed that melatonin is also highly correlated with gastric cancer and BPS. In cell proliferation and migration assays, melatonin and BPS exposure inhibited the invasion abilities of gastric cancer cells compared to BPS-exposure. Our research provided a new direction for the exploration the correlation between cancer and environmental toxicity.
Assuntos
Melatonina , Neoplasias Gástricas , Humanos , Receptor alfa de Estrogênio , Melatonina/farmacologia , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/genética , Simulação de Acoplamento Molecular , Compostos Benzidrílicos/toxicidadeRESUMO
Introduction: This study attempted to investigate the potential of a risk model constructed for regulatory T cells (Tregs) and their related genes in predicting gastric cancer (GC) prognosis. Material and methods: We used flow cytometry to detect the content of CD4+CD25+ Tregs. After detecting expression of five Treg-related genes by quantitative real-time polymerase chain reaction (qRT-PCR), Pearson analysis was employed to analyze the correlation between Tregs and related gene expression. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation and transwell assays were used to detect the effects of a disintegrin and metalloproteinase with thrombospondin motifs 12 (ADAMTS12) on cell functions. A prognostic risk model was built after Cox regression analysis. The Kaplan-Meier method was employed to assess how Tregs, 5-gene risk scores and expression of 5 genes were correlated with the survival time. Results: A significantly increased content of Tregs was found in GC tissues (p < 0.05). 5 Treg- related genes were significantly up-regulated in GC with a positive correlation with the content of Tregs (p < 0.05). Overexpression of ADAMTS12 significantly enhanced the viability, proliferation, migration and invasion of tumor cells. Kaplan-Meier analysis demonstrated poor overall survival and disease-free survival in the high-risk group. The results of survival analysis of Treg content and related gene expression were consistent with those of Cox analysis. Conclusions: The risk model constructed based on five Treg-related genes can enable effective prediction in the prognosis of GC patients.
RESUMO
The potato lectin has been identified to consist of two chitin-binding modules, each containing twin hevein domains. Based on the thermotolerance of the hevein polypeptide, a simple, rapid, and effective protocol for the small-scale purification of the potato lectin has been developed in this study. The method involves only one anion exchange chromatographic step beyond the ammonium sulfate precipitation and the heating treatment. With this method, the potato lectin, a glycoprotein with molecular mass of approximately 60 kDa was found and purified to homogeneity with 9513.3 u/mg of specific hemagglutination (HA) activity in 76.8% yield. The homogeneity was confirmed by SDS-PAGE electrophoresis and reverse-phase HPLC analysis. The purified lectin was identified using MS-based peptide sequencing (MALDI-TOF/TOF) and showed a 100% Confidence Interval as being homologous to hevein domains in potato lectin. The periodic acid-Schiff staining and ferric-orcinol assay for pentose, as well as its HA activity inhibition by chitosan oligomers further confirmed the purified lectin as a potato chitin-binding lectin. It is noteworthy that the purified potato lectin exhibited heat resistance, by which, together with a short time precipitation by ammonium sulfate, more than 96% of the total proteins in the crude extract were removed. The lectin therefore was easily resolved from the other remining proteins on a DEAE-methyl polyacrylate column.
Assuntos
Temperatura Alta , Lectinas de Plantas/química , Lectinas de Plantas/isolamento & purificação , Tubérculos/química , Solanum tuberosum/química , Estabilidade ProteicaRESUMO
Background: Long non-coding RNA (lncRNA) LINC01569 plays an important role in regulating the tumor microenvironment (TME) and macrophage polarization. However, whether it participates in the progression of hypopharyngeal carcinoma by regulating the TME remains unclear. Methods: An online database was used to analyze clinical data. Macrophage polarization was detected using qRT-PCR and flow cytometry. In vivo experiments were performed using tumor-bearing nude mice. A co-culture system of hypopharyngeal carcinoma cells and macrophages was used to explore the interactions between the two cell types. Results: LINC01569 enhancement was observed in hypopharyngeal carcinoma tumor-associated macrophages (TAMs). In IL4-induced M2 macrophages, the expression of LINC01569 increased, while LINC01569 expression declined significantly in LPS-induced M1 macrophages. SiRNA-mediated downregulation of LINC01569 inhibits IL4-induced M2 macrophage polarization. Using online databases and a dual-luciferase reporter, miR-193a-5p was confirmed as a potential downstream sponge of LINC01569. MiR-193a-5p expression decreased in IL4-mediated M2 macrophages, which was restored by LINC01569 downregulation. Additionally, LINC01569 inhibition-mediated blocking of M2 macrophage polarization was moderately abolished by transfection with the miR-193a-5p inhibitor. Fatty acid desaturase 1 (FADS1) was verified as a downstream target of miR-193a-5p, and LINC01569 downregulation-mediated inhibition of FADS1 was blocked by miR-193a-5p mimics. Importantly, LINC01569 downregulation-mediated decline in M2 macrophage polarization was abolished by miR-193a-5p mimics, which was further reversed by FADS1 knockdown. Implantation of a mixture of FaDu cells and IL4-induced macrophages promoted tumor growth and proliferation, which were abrogated by the knockdown of LINC01569 in macrophages. Using an in co-culture system of FaDu cells and macrophages in vitro, M2 macrophage-regulated cell growth and apoptosis of FaDu cells were found to be mediated by the LINC01569/miR-193a-5p signaling axis. Conclusion: LINC01569 is highly expressed in the TAMs of hypopharyngeal carcinoma. LINC01569 downregulation restrains macrophages from polarizing toward M2 through the miR-193a-5p/FADS1 signaling axis, thereby helping tumor cells escape inherent immune surveillance and promoting the occurrence and development of hypopharyngeal carcinoma.
RESUMO
Gastric cancer (GC) poses a significant threat to human health and remains a prevalent form of cancer. Despite clinical treatments, the prognosis for Gastric cancer patients is still unsatisfactory, largely due to the development of multidrug resistance. Oxaliplatin (OXA), a second-generation platinum drug, is commonly recommended for adjuvant and palliative chemotherapy in Gastric cancer; however, the underlying mechanisms of acquired resistance to Oxaliplatin in Gastric cancer patients are not yet fully understood. In this study, we aimed to explore the potential mechanisms of Oxaliplatin resistance in Gastric cancer by employing bioinformatics analysis and conducting in vitro experiments. Specifically, we focused on investigating the role of methyltransferase-like 3 (METTL3). Our findings revealed that the knockdown of METTL3 significantly impeded the proliferation and migration of Gastric cancer cells. METTL3 knockdown induced apoptosis in OXA-resistant Gastric cancer cells and enhanced their sensitivity to Oxaliplatin. Furthermore, we found that DNA repair pathways were significantly activated in OXA-resistant Gastric cancer cells, and METTL3 knockdown significantly inhibited DNA repair pathways. Another important finding is that METTL3 knockdown and OXA-induced Gastric cancer cell death are additive, and the targeted METTL3 can assist Oxaliplatin treatment. Collectively, our findings suggest that METTL3 knockdown can augment the sensitivity of Gastric cancer cells to Oxaliplatin by impeding DNA repair processes. Consequently, targeting METTL3 holds great promise as a viable adjuvant strategy in the treatment of Gastric cancer patients.
RESUMO
[This corrects the article DOI: 10.3892/ol.2020.12197.].
RESUMO
Background: The mechanism underlying cisplatin resistance in colorectal carcinoma (CRC) has not yet been elucidated. This study is aimed to illustrate the indispensable role of proline-rich acidic protein 1 (PRAP1) in cisplatin-resistant CRC. Methods: Cell viability and apoptosis were monitored using cell counting kit-8 and flow cytometry. Immunofluorescence and morphological analysis were used to determine mitotic arrest in cells. In vivo drug resistance was evaluated using a tumor xenograft assay. Results: PRAP1 was highly expressed in cisplatin-resistant CRC. PRAP1-upregulation in HCT-116 cells increased chemoresistance to cisplatin, whereas RNAi-mediated knockdown of PRAP1 sensitized cisplatin-resistant HCT-116 cells (HCT-116/DDP) to cisplatin. PRAP1-upregulation in HCT-116 cells hindered mitotic arrest and the formation of mitotic checkpoint complexes (MCC), followed by an increase in multidrug-resistant proteins such as p-glycoprotein 1 and multidrug resistance-associated protein 1, while PRAP1-knockdown in HCT-116/DDP cells partly restored colcemid-induced mitotic arrest and MCC assembly, resulting in decreased multidrug-resistant protein levels. PRAP1 downregulation-mediated sensitization to cisplatin in HCT-116/DDP cells was abolished by the inhibition of mitotic kinase activity by limiting MCC assembly. Additionally, PRAP1-upregulation increased cisplatin-resistance in CRC in vivo. Mechanistically, PRAP1 increased the expression of mitotic arrest deficient 1 (MAD1), that competitively binds to mitotic arrest deficient 2 (MAD2) in cisplatin-resistant CRC cells, leading to failed assembly of MCC and subsequent chemotherapy resistance. Conclusion: PRAP1-overexpression caused cisplatin resistance in CRC. Possibly, PRAP1 induced an increase in MAD1, which competitively interacted with MAD2 and subsequently restrained the formation of MCC, resulting in CRC cells escape from the supervision of MCC and chemotherapy resistance.
RESUMO
MicroRNAs are crucial tumor regulators to tumor development and progression. MiR-30c-2-3p can suppress malignant progression of tumor cells, but no study has reported the modulatory process of miR-30c-2-3p in gastric adenocarcinoma (GA). We herein investigated role of miR-30c-2-3p in GA cells. Here, we evaluated gene level in cancer cells by qRT-PCR. CCK-8, colony formation, flow cytometry, and transwell assays revealed biological functions of miR-30c-2-3p and ARHGAP11A. Genes downstream of miR-30c-2-3p were acquired through bioinformatics analysis. Our results suggested a low level of miR-30c-2-3p in GA tissue and cells, while its high expression could repress the malignant progression and promote cell cycle arrest and apoptosis of GA cells. Besides, ARHGAP11A was downstream of miR-30c-2-3p, with up-regulated ARHGAP11A facilitating malignant progression and repressing cell cycle arrest and apoptosis of GA cells. In addition, changes in GA cell functions caused by high ARHGAP11A expression could be partially offset by enhancing miR-30c-2-3p. Thus, our observations indicated that miR-30c-2-3p was a tumor repressor that could inhibit GA progression via modulating ARHGAP11A.
Assuntos
Adenocarcinoma , Proteínas Ativadoras de GTPase , MicroRNAs , Neoplasias Gástricas , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologiaRESUMO
[This corrects the article DOI: 10.3892/ol.2020.12197.].
RESUMO
OBJECTIVE: To investigate clinical benefit and safety of neoadjuvant chemotherapy (NAC) plus bevacizumab combined with total mesorectal excision (TME) in treating patients with BRAF-mutated locally advanced rectal cancer (LARC). METHODS: This study included LARC patients with BRAF mutation admitted to the Oncology Department of Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, between June 2013 and December 2018. Patients in the control group received a standard treatment regimen of TME combined with NAC (n = 45), and patients in the observation group received NAC plus bevacizumab combined with TME (n = 55). The short-term clinical efficacy of the two groups after NAC treatment was observed and compared, including differences in the pathological downstaging rate. The incidence of perioperative complications and adverse reactions during neoadjuvant therapy was compared to evaluate the safety of the treatment. Besides, the relapse-free survival (RFS) and overall survival (OS) of patients were analyzed to evaluate the long-term clinical benefit of the treatment. RESULTS: Compared with the control group, the ypT staging rate (p = 0.014) in the observation group was markedly lower. In addition, patients in the observation group had a prominently lower overall incidence of complications (p < 0.001) during the perioperative period and a remarkably lower incidence of leukopenia (p = 0.037) during neoadjuvant therapy. In terms of long-term clinical benefit, the RFS of patients in the observation group was evidently longer (p = 0.037) than that in the control group. CONCLUSION: Compared with TME plus NAC treatment, the short-term and long-term clinical benefits are higher and safety is more favorable of NAC plus bevacizumab combined with TME in treating LARC patients.
Assuntos
Bevacizumab/uso terapêutico , Mutação , Terapia Neoadjuvante , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Retais/genética , Neoplasias Retais/terapia , Idoso , Antineoplásicos Imunológicos/uso terapêutico , Biologia Computacional , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Retais/patologia , Resultado do TratamentoRESUMO
[This corrects the article on p. 2524 in vol. 13, PMID: 33165443.].
RESUMO
Molecular heterogeneity determines the differences in the pathological features, prognosis and survival after relapse when comparing left-sided colon cancer (LCC) and right-sided colon cancer (RCC). At present, the discrepancy in the underlying molecular events between the two types of colon cancer has not been thoroughly investigated. The present study aimed to explore novel targets to predict the disease stage and prognosis of LCC and RCC. Expression analysis of guanine nucleotide binding-protein γ subunit 4 (GNG4) was performed using the Gene Expression Profiling Interactive Analysis (GEPIA) and Oncomine databases. Survival and association analyses were performed using GEPIA and the colon adenocarcinoma dataset from The Cancer Genome Atlas database. GNG4-positive cells in a tissue microarray were examined using immunohistochemistry. According to the GNG4 expression data from Caucasian patients included in the TCGA dataset, GNG4 was highly expressed and positively associated with pathological stage and overall survival (OS) rates in colon cancer. GNG4 expression was higher in LCC than in RCC. Patients with LCC with high GNG4 expression exhibited higher pathological stage and lower survival rates, whereas this was not observed in patients with RCC. In addition, the clinical tissues used in the microarray showed that GNG4 expression was increased in Chinese patients with LCC compared with that in patients with RCC. Consistently, GNG4 expression was negatively associated with OS in patients with LCC, but not in patients with RCC. However, no association was observed between GNG4 expression and the disease stage of colon cancer in both patients with LCC and RCC. Overall, the molecular heterogeneity of GNG4 in LCC and RCC suggests that GNG4 may be used as a diagnostic and prognostic biomarker in patients with LCC.
RESUMO
MicroRNA-451 (miR-451) is lowly expressed in stomach cancer cells and improves their metastatic ability by down-regulating extracellular signal-regulated kinase 2 (ERK2). Many studies have found that caveolin-1 (CAV1) plays an important role in cancer progression. Additionally, miR-451 has been reported to regulate the expression of CAV1 in chronic obstructive pulmonary disease. Therefore, this study aims to determine if miR-451 regulates the biological functions of stomach cancer cells by regulating CAV1 expression. Through a bioinformatics analysis, we found that miR-451a regulates CAV1 expression, and miR-451a expression is relatively low in stomach cancer cells. Next, we confirmed that miR-451a negatively regulates CAV1 expression using a dual-luciferase reporter assay. Then MTT, 5-ethynyl-2'-deoxyuridine (EdU), propidium iodide (PI), an Annexin V-FITC/PI apoptosis kit, and transwell assays were used to measure the changes in cell proliferation, the cell cycle, apoptosis, cell migration, and invasiveness in stomach cancer cells overexpressing miR-451a or both miR-451a and CAV1. It was found that increasing the miR-451a expression in stomach cancer cells inhibits cell growth, migration, and invasiveness, and promotes apoptosis. After restoring the CAV1 expression, these biological processes resumed. In summary, in stomach cancer cells, the overexpression of miR-451a can restrain cell growth and promote apoptosis, so it is a potential treatment for stomach cancer.
RESUMO
The present study investigated the association between the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway with tumor progression and prognosis of colon cancer. A total of 62 patients with colon cancer were selected as the colon cancer group, and 40 patients with colon lesions were selected as the benign colon lesion group. Immunohistochemistry was used to detect the expression levels of JAK-1 and STAT-3 proteins in colon tissues. The association of JAK-1 and STAT-3 proteins with the pathological parameters and prognosis of colon cancer were analyzed. The total positive rates of JAK-1 and STAT-3 proteins in lesions of patients in the colon cancer group were significantly higher compared with those in the benign colon lesion group (P<0.05). The positive expression of JAK-1 and STAT-3 proteins in patients with colon cancer were not significantly associated with sex, age, tumor differentiation degree and neurovascular invasion (P>0.05), but significantly associated with the clinical stage of colon cancer, tumor infiltration depth and lymph node metastasis (P<0.05). The survival time of patients with colon cancer with positively-expressed JAK-1 and STAT-3 proteins was significantly shorter compared with that of patients with negatively-expressed JAK-1 and STAT-3 proteins (P<0.05). tumor-node-metastasis (TNM) stage, lymph node metastasis and the expression of JAK-1 and STAT-3 proteins in the tumor were associated with the prognosis of patients with colon cancer (P<0.05). TNM stage and the expression levels of JAK-1 and STAT-3 proteins were independent risk factors influencing the prognosis of colon cancer (P<0.05). The JAK/STAT signal may be used as a novel tumor marker and prognostic factor for the diagnosis, assessment and prognosis of colon cancer.
RESUMO
PURPOSE: This study evaluated the efficacy and toxicity of combination chemotherapy with paclitaxel, oxaliplatin, 5-fluorouracil and leucovorin (POFL) in patients with recurrent or metastatic gastric cancer. METHODS: One hundred and thirty-eight patients with histologically confirmed recurrent or metastatic gastric adenocarcinoma were treated with the POFL regimen: paclitaxel at a dose of 135 mg/m2 as a 3-hour intravenous infusion on day 1, oxaliplatin 85 mg/m2 and leucovorin 400 mg/m2 as an intravenous infusion over 2 hours on day 1, followed by 5-fluorouracil 2,400 mg/m2 as an infusion over a 46-hour period on 3 consecutive days, in a 2-week cycle. RESULTS: Twelve patients could not be evaluated for response because of the absence of any measurable lesions or early discontinuation of therapy, so responses were assessed in 126 patients. The overall objective response rate was 56.3% (95% CI, 47.5%-64.9%). The median time to progression was 6.7 months (95% CI, 5.8-7.6 months), and the median overall survival was 12.6 months (95% CI, 11.3-13.9 months). The most common grade 3 and 4 toxicities were neutropenia (50.7%), peripheral neurotoxicity (16.7%) and alopecia (27.5%). CONCLUSIONS: Combination chemotherapy with POFL offers a new, active and safe approach to the treatment of recurrent or metastatic gastric cancer.