Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Arch Toxicol ; 96(6): 1711-1728, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35376969

RESUMO

Bisphenol F is a substitute material for bisphenol A and is widely used in household products as a raw material for polycarbonate resin, epoxy resin, and plastic reinforcement. It is known to be mainly used in food containers, thermal paper for receipts, and coatings for water pipes. In some countries, bisphenol F has been detected in drinking water and human urine samples. However, due to the lack of safety evaluation data on bisphenol F, it is difficult to establish appropriate guidelines for the proper use of the substance, and social anxiety is increasing accordingly. This study investigated the use, exposure route, and distribution flow of bisphenol F, a household chemical. To determine the no-observed-adverse-effect level (NOAEL) and target organ of bisphenol F after exposure, a single-dose oral toxicity, dose-range finding (28 day oral), repeated dose toxicity (90 day oral), and genotoxicity (reverse mutation, chromosomal abnormality, in vivo micronucleus test) tests were performed. The pharmacokinetic profile was also obtained. The test results are as follows: in the pharmacokinetic study, it was confirmed that single oral exposure to BPF resulted in systemic exposure; in single oral dose toxicity test, the approximate lethal dose was found to be 4000 mg/kg and confusion and convulsion was shown in the test animals; NOAEL was determined to be 2 mg/kg/day for male and 5 mg/kg/day for female, and the no-observed-effect level (NOEL) was determined to be 2 mg/kg/day for males and 1 mg/kg/day for females, and the target organ was the small intestine; genotoxicity tests confirmed that BPF does not induce genotoxicity.


Assuntos
Compostos Benzidrílicos , Plásticos , Animais , Compostos Benzidrílicos/química , Compostos Benzidrílicos/toxicidade , Aberrações Cromossômicas , Relação Dose-Resposta a Droga , Feminino , Masculino , Testes de Mutagenicidade , Fenóis
2.
Part Fibre Toxicol ; 17(1): 43, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917232

RESUMO

BACKGROUND: The quantification of nanomaterials accumulated in various organs is crucial in studying their toxicity and toxicokinetics. However, some types of nanomaterials, including carbon nanomaterials (CNMs), are difficult to quantify in a biological matrix. Therefore, developing improved methodologies for quantification of CNMs in vital organs is instrumental in their continued modification and application. RESULTS: In this study, carbon black, nanodiamond, multi-walled carbon nanotube, carbon nanofiber, and graphene nanoplatelet were assembled and used as a panel of CNMs. All CNMs showed significant absorbance at 750 nm, while their bio-components showed minimal absorbance at this wavelength. Quantification of CNMs using their absorbance at 750 nm was shown to have more than 94% accuracy in all of the studied materials. Incubating proteinase K (PK) for 2 days with a mixture of lung tissue homogenates and CNMs showed an average recovery rate over 90%. The utility of this method was confirmed in a murine pharyngeal aspiration model using CNMs at 30 µg/mouse. CONCLUSIONS: We developed an improved lung burden assay for CNMs with an accuracy > 94% and a recovery rate > 90% using PK digestion and UV-Vis spectrophotometry. This method can be applied to any nanomaterial with sufficient absorbance in the near-infrared band and can differentiate nanomaterials from elements in the body, as well as the soluble fraction of the nanomaterial. Furthermore, a combination of PK digestion and other instrumental analysis specific to the nanomaterial can be applied to organ burden analysis.


Assuntos
Endopeptidase K/metabolismo , Pulmão/fisiopatologia , Nanotubos de Carbono/toxicidade , Espectrofotometria , Animais , Digestão , Grafite , Pulmão/diagnóstico por imagem , Camundongos , Nanoestruturas , Raios Ultravioleta
3.
Part Fibre Toxicol ; 17(1): 34, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680532

RESUMO

BACKGROUND: Nanotechnology is indispensable to many different applications. Although nanoparticles have been widely used in, for example, cosmetics, sunscreen, food packaging, and medications, they may pose human safety risks associated with nanotoxicity. Thus, toxicity testing of nanoparticles is essential to assess the relative health risks associated with consumer exposure. METHODS: In this study, we identified the NOAEL (no observed adverse effect level) of the agglomerated/aggregated TiO2 P25 (approximately 180 nm) administered at repeated doses to Sprague-Dawley (SD) rats for 28 and 90 days. Ten of the 15 animals were necropsied for toxicity evaluation after the repeated-dose 90-day study, and the remaining five animals were allowed to recover for 28 days. The agglomerated/aggregated TiO2 P25 dose levels used included 250 mg kg- 1 d- 1 (low), 500 mg kg- 1 d- 1 (medium), and 1000 mg kg- 1 d- 1 (high), and their effects were compared with those of the vehicle control. During the treatment period, the animals were observed for mortality, clinical signs (detailed daily and weekly clinical observations), functional observation battery, weekly body weight, and food and water consumption and were also subjected to ophthalmological examination and urinalysis. After termination of the repeated-dose 28-day, 90-day, and recovery studies, clinical pathology (hematology, blood coagulation time, and serum biochemistry), necropsy (organ weights and gross findings), and histopathological examinations were performed. RESULTS: No systemic toxicological effects were associated with the agglomerated/aggregated TiO2 P25 during the repeated-dose 28-day, 90-day, and recovery studies in SD rats. Therefore, the NOAEL of the agglomerated/aggregated TiO2 P25 was identified as 1000 mg kg- 1 d- 1, and the substance was not detected in the target organs. CONCLUSION: Subacute and subchronic oral administration of the agglomerated/aggregated TiO2 P25 was unlikely to cause side effects or toxic reactions in rats.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Titânio/toxicidade , Administração Oral , Animais , Relação Dose-Resposta a Droga , Nanopartículas , Nanotecnologia , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade
4.
Arch Toxicol ; 92(4): 1393-1405, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29450565

RESUMO

Gold (AuNPs, 12.8 nm) and silver nanoparticles (AgNPs, 10 nm), mixed or separate, were injected into the caudal vein of male Sprague-Dawley rats for 4 weeks. The rats were allowed to recover for further 4 weeks to examine the differences in AuNP/AgNP tissue distribution and clearance. The size distribution of injected AuNPs and AgNPs were not statistically different. The dose groups (five males per group for the administration and three males for the recovery) consisted of seven divisions, i.e., control, AgNPs (with a low dose of 10 µg/kg/day, and, a high dose of 100 µg/kg/day), AuNPs (with a low dose of 10 µg/kg/day, and, a high dose of 100 µg/kg/day), as well as mixed AgNPs/AuNPs (with a low dose of 10/10 µg/kg/day, and a high dose of 100/100 µg/kg/day). The AgNPs accumulated in a dose-dependent manner in the liver, spleen, kidneys, lung, brain, testis or blood. Au concentration increased also in a dose-dependent manner in the liver, kidneys, spleen and lungs, but not in the brain, testis and blood. Ag concentration in the tissues increased dose-dependently after 4 weeks of AgNP/AuNP mixed administration, but to a much lower extent than those observed when they were administered separately. Ag concentration in the tissues after 4 weeks of AgNP/AuNP mixed administration cleared dose-dependently after 4 weeks of recovery. Au concentration in the tissues increased dose-dependently after 4 weeks of AgNp/AuNP mixed administration, while Au concentration in the tissues did not clear as seen in Ag after 4 weeks recovery. Au concentration showed biopersistency or accumulation in the liver, kidneys, spleen and brain of the 4 weeks of recovery. In conclusion, AgNPs and AuNPs showed different toxicokinetic properties and the mixed administration of AgNPs with AuNPs resulted in mutual reduction of their tissue distribution which appeared to be due to competitive inhibition. Furthermore, this subacute intravenous injection study has suggested that these nanoparticles were distributed to the organs in particulate instead of ionic forms.


Assuntos
Ouro/farmacocinética , Nanopartículas Metálicas/administração & dosagem , Prata/farmacocinética , Animais , Ouro/administração & dosagem , Injeções Intravenosas , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Prata/administração & dosagem , Distribuição Tecidual
5.
Int J Toxicol ; 35(1): 27-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26268766

RESUMO

Carbon nanotubes (CNTs) have been introduced recently as a novel carrier system for both small and large therapeutic molecules. Biotin-functionalized single-wall CNTs have been conjugated with the anticancer agent taxoid using a cleavable linker, and multiwall carbon nanotubes (MWCNTs) conjugated with iron nanoparticles have been efficiently loaded with doxorubicin. The MWCNTs are effective transporters for biological macromolecules and drugs to target cells and tissues, thereby attracting the attention of the biomedical industry. Administrating MWCNTs for medical application invariably involves intravenous administration and ultimate contact with human peripheral blood lymphocytes (HPBLs), yet toxicological studies on the effect of MWCNTs on HPBLs are lacking. Accordingly, this study evaluated the cytotoxic and genotoxic effects of MWCNTs on healthy male HPBLs. Healthy male HPBLs were treated with MWCNTs at 3 different concentrations (12.5, 25, and 50 µg/mL) for 48 hours. Under these conditions, the MWCNTs induced significant cell growth retardation, DNA damage, and cytotoxicity. The MWCNT-treated HPBLs also exhibited an increased intracellular reactive oxygen species level during the experimental period, which leads to cell damage and death, proliferation inhibition, DNA damage, and an inflammatory response.


Assuntos
Dano ao DNA , Linfócitos/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Adulto , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Linfócitos/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo
6.
Toxicol Ind Health ; 31(8): 747-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23552264

RESUMO

Single-walled carbon nanotubes (SWCNTs) have extensive potential industrial applications due to their unique physical and chemical properties; yet this also increases the chance of human and environment exposure to SWCNTs. Due to the current lack of hazardous effect information on SWNCTs, a standardized genotoxicity battery test was conducted to clarify the genetic toxicity potential of SWCNTs (diameter: 1-1.2 nm, length: ∼20 µm) according to Organization for Economic Cooperation and Development test guidelines 471 (bacterial reverse mutation test), 473 (in vitro chromosome aberration test), and 474 (in vivo micronuclei test) with a good laboratory practice system. The test results showed that the SWCNTs did not induce significant bacterial reverse mutations at 31.3-500 µg/plate in Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 or in Escherichia coli strain WP2uvrA, with and without a metabolic activation system. Furthermore, the in vitro chromosome aberration test showed no significant increase in structural or numerical chromosome aberration frequencies at SWCNT dose levels of 12.5-50 µg/ml in the presence and absence of metabolic activation. However, dose-dependent cell growth inhibition was found at all the SWCNT dose levels and statistically significant cytotoxic effects observed at certain concentrations in the presence and absence of metabolic activation. Finally, the SWCNTs did not evoke significant in vivo micronuclei frequencies in the polychromatic erythrocytes of an imprinting control region mice at 25-100 mg/kg. Thus, according to the results of the present study, the SWCNTs were not found to have a genotoxic effect on the in vitro and in vivo test systems.


Assuntos
Escherichia coli/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Animais , Dano ao DNA , Relação Dose-Resposta a Droga , Camundongos , Testes de Mutagenicidade
7.
Inhal Toxicol ; 26(4): 222-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24568578

RESUMO

Despite their useful physico-chemical properties, carbon nanotubes (CNTs) continue to cause concern over occupational and human health due to their structural similarity to asbestos. Thus, to evaluate the toxic and genotoxic effect of multi-wall carbon nanotubes (MWCNTs) on lung cells in vivo, eight-week-old rats were divided into four groups (each group = 25 animals), a fresh air control (0 mg/m(3)), low (0.17 mg/m(3)), middle (0.49 mg/m(3)), and high (0.96 mg/m(3)) dose group, and exposed to MWCNTs via nose-only inhalation 6 h per day, 5 days per week for 28 days. The count median length and geometric standard deviation for the MWCNTs determined by TEM were 330.18 and 1.72 nm, respectively, and the MWCNT diameters ranged from 10 to 15 nm. Lung cells were isolated from five male and five female rats in each group on day 0, day 28 (only from males) and day 90 following the 28-day exposure. The total number of animals used was 15 male and 10 female rats for each concentration group. To determine the genotoxicity of the MWCNTs, a single cell gel electrophoresis assay (Comet assay) was conducted on the rat lung cells. As a result of the exposure, the olive tail moments were found to be significantly higher (p < 0.05) in the male and female rats from all the exposed groups when compared with the fresh air control. In addition, the high-dose exposed male and middle and high-dose exposed female rats retained DNA damage, even 90 days post-exposure (p < 0.05). To investigate the mode of genotoxicity, the intracellular reactive oxygen species (ROS) levels and inflammatory cytokine levels (TNF-α, TGF- ß, IL-1, IL-2, IL-4, IL-5, IL-10, IL-12 and IFN-γ) were also measured. For the male rats, the H2O2 levels were significantly higher in the middle (0 days post-exposure) and high- (0 days and 28 days post-exposure) dose groups (p < 0.05). Conversely, the female rats showed no changes in the H2O2 levels. The inflammatory cytokine levels in the bronchoalveolar lavage (BAL) fluid did not show any statistically significant difference. Interestingly, the short-length MWCNTs deposited in the lung cells were persistent at 90 days post-exposure. Thus, exposing lung cells to MWCNTs with a short tube length may induce genotoxicity.


Assuntos
Dano ao DNA , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Ensaio Cometa , Citocinas/metabolismo , Feminino , Pulmão/citologia , Pulmão/metabolismo , Masculino , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade Subaguda
8.
Part Fibre Toxicol ; 10: 36, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24059869

RESUMO

Silver nanoparticles are known to be distributed in many tissues after oral or inhalation exposure. Thus, understanding the tissue clearance of such distributed nanoparticles is very important to understand the behavior of silver nanoparticles in vivo. For risk assessment purposes, easy clearance indicates a lower overall cumulative toxicity. Accordingly, to investigate the clearance of tissue silver concentrations following oral silver nanoparticle exposure, Sprague-Dawley rats were assigned to 3 groups: control, low dose (100 mg/kg body weight), and high dose (500 mg/kg body weight), and exposed to two different sizes of silver nanoparticles (average diameter 10 and 25 nm) over 28 days. Thereafter, the rats were allowed to recover for 4 months. Regardless of the silver nanoparticle size, the silver content in most tissues gradually decreased during the 4-month recovery period, indicating tissue clearance of the accumulated silver. The exceptions were the silver concentrations in the brain and testes, which did not clear well, even after the 4-month recovery period, indicating an obstruction in transporting the accumulated silver out of these tissues. Therefore, the results showed that the size of the silver nanoparticles did not affect their tissue distribution. Furthermore, biological barriers, such as the blood-brain barrier and blood-testis barrier, seemed to play an important role in the silver clearance from these tissues.


Assuntos
Nanopartículas Metálicas/química , Prata/farmacocinética , Animais , Peso Corporal/efeitos dos fármacos , Coloides , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Masculino , Taxa de Depuração Metabólica , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Tamanho do Órgão/efeitos dos fármacos , Especificidade de Órgãos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Prata/química , Prata/toxicidade , Distribuição Tecidual
9.
Toxicol Mech Methods ; 23(6): 437-48, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23517440

RESUMO

The specific properties of silver nanoparticles (AgNPs), such as antimicrobial activity and electrical conductivity, allow them to be used in many fields. However, their expanding application is also raising health, environmental and safety concerns. Previous in vivo AgNP toxicity studies have indicated a gender-different accumulation of silver in the kidneys, with 2-3 times more silver in female kidneys compared to male kidneys. However, no other studies have further addressed this gender difference. Accordingly, the current study investigated the gender-dependent effect of AgNPs on the kidney gene level based on toxicogenomic studies of kidneys obtained from rats exposed to AgNPs via inhalation for 12 weeks. When compared with the fresh air control, the silver nanoparticle-exposed kidneys included 104 genes with a more than 1.3-fold expression increase. For the male rat kidneys exposed to a low or high dose of silver nanoparticles, 96 genes exhibited expression changes, where six genes changed with both the low and high dose; four increased and two decreased. Meanwhile, for the female rat kidneys exposed to a low or high dose of silver nanoparticles, 66 genes exhibited expression changes, where 11 genes changed with both the low and high dose; nine increased and two decreased. Gender-dependent gene expression changes of more than 2-fold were linked to 163 genes, with 79 genes in the male kidneys and 84 genes in the female kidneys, plus gender-dependent gene expression changes of more than 5-fold were linked to 21 genes. However, no genes involved in apoptosis or the cell cycle were activated by the 12-week silver nanoparticle inhalation exposure. Overall, the male rat kidneys showed a higher expression of genes involved in xenobiotic metabolism, while the female rat kidneys showed a higher expression of genes involved in extracellular signaling.


Assuntos
Exposição por Inalação/efeitos adversos , Rim/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Caracteres Sexuais , Prata/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Rim/metabolismo , Masculino , Nanopartículas Metálicas/química , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Prata/química , Testes de Toxicidade Subcrônica
10.
J Hazard Mater ; 452: 131223, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948120

RESUMO

The measurement of nanoparticles (NPs) in a biological matrix is essential in various toxicity studies. However, the current knowledge has limitations in differentiating particulate and ionic forms and further identification of their biotransformation. Herein, we evaluate the biotransformation and differential lung clearance kinetics of particulate and ionic forms using PEGylated silver NPs (AgNP-PEGs; 47.51 nm) and PEGylated gold NPs (AuNP-PEGs; 11.76 nm). At 0, 3, and 6 h and 1, 3, 7, and 14 days after a single pharyngeal aspiration in mice at 25 µg/mouse, half of the lung is digested by proteinase K (PK) to separate particulates and ions, and the other half is subjected to the acid digestion method for comparison. The quantitative and qualitative evaluation of lung clearance kinetics suggests that AgNP-PEGs are quickly dissolved and transformed into insoluble silver sulfide (Ag2S), which shows a fast-clearing early phase (0 -6 h; particle T1/2: 4.8 h) and slow-clearing late phase (1 -14 days; particle T1/2: 13.20 days). In contrast, AuNP-PEGs were scarcely cleared or biotransformed in the lungs for 14 days. The lung clearance kinetics of AgNPs and biotransformation shown in this study can be informed by the PK digestion method and cannot be obtained using the acid digestion method.


Assuntos
Nanopartículas Metálicas , Prata , Camundongos , Animais , Prata/metabolismo , Pulmão/metabolismo , Biotransformação , Íons , Polietilenoglicóis , Tamanho da Partícula
11.
Toxics ; 11(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36977054

RESUMO

The sustained growth of the market for ophthalmic medical devices has increased the demand for alternatives to animal testing for the evaluation of eye irritation. The International Organization for Standardization has acknowledged the need to develop novel in vitro tests to replace animal testing. Here, we evaluated the applicability of an alternative method based on a human corneal model to test the safety of ophthalmic medical devices. 2-Hydroxyethyl methacrylate (HEMA) and Polymethyl methacrylate (PMMA), which are used to fabricate contact lenses, were used as base materials. These materials were blended with eye irritant and non-irritant chemicals specified in the OECD Test Guideline (TG) 492 and Globally Harmonized System (GHS) classification. Then, three GLP-certified laboratories performed three replicates using the developed method using 3D reconstructed human cornea epithelium, MCTT HCETM. OECD TG 492 describes the procedure used to evaluate the eye hazard potential of the test chemical based on its ability to induce cytotoxicity in a reconstructed human cornea-like epithelium (RhCE) tissue. Results: The within-laboratory reproducibility (WLR) and between-laboratory reproducibility (BLR) were both 100%. When a polar extraction solvent was used, the sensitivity, specificity, and accuracy were all 100% in each laboratory. When a non-polar extraction solvent was used, the sensitivity was 80%, the specificity was 100%, and the accuracy was 90%. The proposed method exhibited excellent reproducibility and predictive capacity within and between laboratories. Therefore, the proposed method using the MCTT HCETM model could be used to evaluate eye irritation caused by ophthalmic medical devices.

12.
Arch Toxicol ; 86(4): 553-62, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22076105

RESUMO

Carbon nanotubes (CNTs) have specific properties, including electrical and thermal conductivity, great strength, and rigidity, that allow them to be used in many fields. However, this increasing contact with humans and the environment is also raising health and safety concerns. Thus, research on the safety of CNTs has attracted much interest, including a comparison of the toxic effects of asbestos and carbon nanotubes, due to their physical similarity of a high aspect ratio (length/diameter). Nonetheless, there has not yet been a toxicogenomic comparison. Therefore, to examine toxicogenomic effects, the 50% growth inhibition (GI(50)) concentration was determined for multi-wall carbon nanotubes (MWCNTs) and asbestos (crocidolite) and found to be approximately 0.0135 and 0.066%, respectively, in the case of 24-h treatment of normal human bronchial epithelia (NHBE) cells. Using these GI(50) concentrations, NHBE cells were then treated with MWCNTs and asbestos for 6 and 24 h, followed by a DNA microarray analysis. Among 31,647 genes, 1,201 and 1,252 were up-regulated by both asbestos and MWCNTs after 6 and 24 h of exposure, respectively. Meanwhile, 1,977 and 1,542 genes were down-regulated by both asbestos and MWNCTs after 6 and 24 h of exposure, respectively. In particular, the asbestos and MWCNTs both induced an over twofold up- and down-regulated expression of 12 mesothelioma-related genes and 22 lung cancer-related genes when compared with the negative control. Plus, the genes induced by the MWCNT exposure were expressed in the brain, lungs, epithelium, liver, and colon.


Assuntos
Asbesto Crocidolita/toxicidade , Nanotubos de Carbono/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Toxicogenética , Brônquios/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
13.
Toxicol Res ; 38(1): 69-90, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35070943

RESUMO

Extracts of Hordeum vulgare and Chrysanthemum zawadskii, two traditional herbal medicines, have long been used to treat women's diseases. Our previous studies have confirmed that these extracts could help relieve the symptoms of premenstrual syndrome by inhibiting prolactin release. A mixture of these natural products was named Lomens-P0. In this study, we conducted three genotoxicity tests (bacterial reverse mutation, mammalian chromosome aberration, and mammalian erythrocyte micronucleus studies) and four oral toxicity tests (single-dose, 2-week repeated-dose, and 13-week repeated-dose studies in rodents, and a single-dose dose-escalation toxicity study in a non-rodent model) to confirm the potential toxicity and safety of Lomens-P0. The results of this series of tests indicated Lomens-P0 did not induce genotoxicity, and the NOAEL for the rodent was 2000 mg/kg BW/day. Similarly, no toxic effects were evident in the single-dose-escalation study in the non-rodent model. In conclusion, we confirmed that Lomens-P0 might have potential utility as a raw material for nutraceuticals and natural medicines. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s43188-021-00090-5.

14.
Part Fibre Toxicol ; 8: 16, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21569586

RESUMO

BACKGROUND: Gold nanoparticles are widely used in consumer products, including cosmetics, food packaging, beverages, toothpaste, automobiles, and lubricants. With this increase in consumer products containing gold nanoparticles, the potential for worker exposure to gold nanoparticles will also increase. Only a few studies have produced data on the in vivo toxicology of gold nanoparticles, meaning that the absorption, distribution, metabolism, and excretion (ADME) of gold nanoparticles remain unclear. RESULTS: The toxicity of gold nanoparticles was studied in Sprague Dawley rats by inhalation. Seven-week-old rats, weighing approximately 200 g (males) and 145 g (females), were divided into 4 groups (10 rats in each group): fresh-air control, low-dose (2.36 × 104 particle/cm3, 0.04 µg/m3), middle-dose (2.36 × 105 particle/cm3, 0.38 µg/m3), and high-dose (1.85 × 106 particle/cm3, 20.02 µg/m3). The animals were exposed to gold nanoparticles (average diameter 4-5 nm) for 6 hours/day, 5 days/week, for 90-days in a whole-body inhalation chamber. In addition to mortality and clinical observations, body weight, food consumption, and lung function were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for hematology and clinical chemistry tests, and organ weights were measured. Cellular differential counts and cytotoxicity measurements, such as albumin, lactate dehydrogenase (LDH), and total protein were also monitored in a cellular bronchoalveolar lavage (BAL) fluid. Among lung function test measurements, tidal volume and minute volume showed a tendency to decrease comparing control and dose groups during the 90-days of exposure. Although no statistically significant differences were found in cellular differential counts, histopathologic examination showed minimal alveoli, an inflammatory infiltrate with a mixed cell type, and increased macrophages in the high-dose rats. Tissue distribution of gold nanoparticles showed a dose-dependent accumulation of gold in only lungs and kidneys with a gender-related difference in gold nanoparticles content in kidneys. CONCLUSIONS: Lungs were the only organ in which there were dose-related changes in both male and female rats. Changes observed in lung histopathology and function in high-dose animals indicate that the highest concentration (20 µg/m3) is a LOAEL and the middle concentration (0.38 µg/m3) is a NOAEL for this study.


Assuntos
Ouro/administração & dosagem , Ouro/toxicidade , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/toxicidade , Administração por Inalação , Animais , Sangue/efeitos dos fármacos , Análise Química do Sangue , Peso Corporal , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Humanos , Rim/patologia , Rim/fisiologia , Pulmão/patologia , Pulmão/fisiologia , Masculino , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Tamanho do Órgão , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
15.
Arch Toxicol ; 85(12): 1499-508, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21656221

RESUMO

Dispersion is one of the key obstacles to evaluating the in vitro and in vivo toxicity of carbon nanotubes (CNTs), as the aggregation or agglomeration of CNTs in culture media or vehicles complicates the interpretation of the toxicity test results. Thus, to test the dispersion of CNTs in biocompatible solutions, 5 known biocompatible dispersants were selected that are widely used for nanomaterial toxicity evaluation studies. Single-wall nanotubes (SWCNTs) and multi-wall nanotubes (MWCNTs) were both dispersed in these dispersants and their macrodispersion evaluated using a light absorbance method. The dispersion stability of the dispersed SWCNTs and MWCNTs was also evaluated for 16 weeks, plus the dispersants were tested for their innate toxicity using trypan blue dye exclusion, lactate dehydrogenase (LDH) leakage, and neutral red assays. All the dispersants were found to be biocompatible in the cytotoxicity tests when compared with a positive control of 2% Triton X-100. In the dispersion tests, 0.02, 0.1, and 0.5% MWCNTs and SWCNTs were diluted in the respective dispersants. Distilled water and dimethylsulfoxide (DMSO) both showed a poor macrodispersion of only 1-13% for the various CNT concentrations. In 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), the 0.02 and 0.1% MWCNTs showed a macrodispersion of 11 and 74%, respectively, while the 0.02 and 0.1% SWCNTs showed a macrodispersion of 15 and 16%, respectively. In 0.5% bovine serum albumin (BSA), the 0.02, 0.1, and 0.5% MWCNTs showed a very good macrodispersion of 32, 53, and 70%, respectively, yet the 0.02% SWCNTs only showed a macrodispersion of 17%. In 1% Tween 80, the 0.02-0.5% SWNCTs exhibited a good macrodispersion of 27-81%, whereas the 0.02-05% MWCNTs only showed a macrodispersion of 13-23%. The dispersion stability of the CNTs during 16 weeks was in the following descending order of BSA, Tween 80, DPPC, and DMSO for the MWCNTs and BSA, DPPC, Tween 80, and DMSO for the SWNCTs. Thus, appropriate dispersants are proposed according to the type of CNT, experiment concentration, and treatment duration. Also, it is suggested that the dispersibility, dispersion stability, and biocompatibility of the selected dispersant should all be confirmed before a toxicity evaluation.


Assuntos
Materiais Biocompatíveis/química , Pulmão/metabolismo , Nanotubos de Carbono/toxicidade , Testes de Toxicidade/métodos , Materiais Biocompatíveis/toxicidade , Células Cultivadas , Humanos , Pulmão/citologia , Pulmão/embriologia , Nanotubos de Carbono/química , Soroalbumina Bovina/química , Tensoativos/química , Fatores de Tempo
16.
Arch Toxicol ; 85(7): 775-86, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20617304

RESUMO

Carbon nanotubes (CNTs) have specific physico-chemical and electrical properties that are useful for telecommunications, medicine, materials, manufacturing processes and the environmental and energy sectors. Yet, despite their many advantages, it is also important to determine whether CNTs may represent a hazard to the environment and human health. Like asbestos, the aspect ratio (length:diameter) and metal components of CNTs are known to have an effect on the toxicity of carbon nanotubes. Thus, to evaluate the toxic potential of CNTs in relation to their aspect ratio and metal contamination, in vivo and in vitro genotoxicity tests were conducted using high-aspect-ratio (diameter: 10-15 nm, length: ~10 µm) and low-aspect-ratio multi-wall carbon nanotubes (MWCNTs, diameter: 10-15 nm, length: ~150 nm) according to OECD test guidelines 471 (bacterial reverse mutation test), 473 (in vitro chromosome aberration test), and 474 (in vivo micronuclei test) with a good laboratory practice system. To determine the treatment concentration for all the tests, a solubility and dispersive test was performed, and a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) solution found to be more suitable than distilled water. Neither the high- nor the low-aspect-ratio MWCNTs induced any genotoxicity in a bacterial reverse mutation test (~1,000 µg/plate), in vitro chromosome aberration test (without S9: ~6.25 µg/ml, with S9: ~50 µg/ml), or in vivo micronuclei test (~50 mg/kg). However, the high-aspect-ratio MWCNTs were found to be more toxic than the low-aspect-ratio MWCNTs. Thus, while high-aspect-ratio MWCNTs do not induce direct genotoxicity or metabolic activation-mediated genotoxicity, genotoxicity could still be induced indirectly through oxidative stress or inflammation.


Assuntos
Mutagênicos/química , Mutagênicos/toxicidade , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Animais , Células CHO , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Aberrações Cromossômicas/induzido quimicamente , Cricetinae , Cricetulus , Escherichia coli/efeitos dos fármacos , Guias como Assunto , Masculino , Teste de Materiais/normas , Camundongos , Camundongos Endogâmicos ICR , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Mutagênicos/farmacocinética , Mutação/efeitos dos fármacos , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Salmonella typhimurium/efeitos dos fármacos , Organismos Livres de Patógenos Específicos , Distribuição Tecidual
17.
Toxicol Ind Health ; 27(2): 149-54, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20870693

RESUMO

The acute inhalation toxicity of silver nanoparticles was studied in Sprague-Dawley rats. Seven-week-old rats, weighing approximately 218 g (males) and 153 g (females), were divided into four groups (five rats in each group): fresh-air control, low-dose (0.94 × 10(6) particle/cm(3), 76 µg/m(3)), middle-dose (1.64 × 10(6) particle/ cm(3), 135 µg/m( 3)), and high-dose (3.08 × 10(6) particle/cm(3), 750 µg/m(3)). The animals were then exposed to silver nanoparticles (average diameter 18-20 nm) for 4 hours in a whole-body inhalation chamber. The experiment was conducted following Organization Economic Cooperation and Development (OECD) test guideline 403 with the application of good laboratory practice (GLP). In addition to mortality and clinical observations, the body weights, food consumption, and pulmonary function tests were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, and the organ weights measured. The lung function was also measured twice per week after the initial 4-hour exposure. No significant body weight changes or clinical changes were found during the 2-week observation period. The lung function tests also indicated no significant difference between the fresh air control and the exposed groups. Thus, LC50 silver nanoparticles are suggested for higher than 3.1 × 10(6) particles/cm(3) (750 µg/m(3)).


Assuntos
Exposição por Inalação , Nanopartículas/toxicidade , Prata/toxicidade , Animais , Peso Corporal , Relação Dose-Resposta a Droga , Feminino , Masculino , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley , Testes de Função Respiratória , Prata/administração & dosagem
18.
Chemosphere ; 262: 128330, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182093

RESUMO

Recently, there have been reports that many microplastics are found in the air, which has raised concerns about their toxicity. To date, however, only limited research has investigated the effects of micro(nano)plastics on human health, and even less the potential for inhalation toxicity. To fill this research gap, we investigated the potential inhalation toxicity of micro(nano)plastics using a modified OECD Guideline for Testing of Chemicals No. 412 '28-Day (subacute) inhalation toxicity study' using a whole-body inhalation system. Sprague-Dawley rats were exposed to three different exposure concentrations of polystyrene micro(nano)plastics (PSMPs), as well as control, for 14 days of inhalation exposure. After 14 days, alterations were observed on sevral endpoints in physiological, serum biochemical, hematological, and respiratory function markers measured on the samples exposed to PSMPs. However, no concentration-response relationships were observed, suggesting that these effects may not be definitively linked to exposure of PSMPs. On the other hand, the expression of inflammatory proteins (TGF-ß and TNF-α) increased in the lung tissue in an exposure concentration-dependent manner. The overall results indicate that 14-day inhalation exposure of PSMPs to rats has a more pronounced effect at the molecular level than at the organismal one. These results suggest that if the exposure sustained, alterations at the molecular level may lead to subsequent alterations at the higher levels, and consequently, the health risks of inhalation exposed micro(nano)plastics should not be neglected.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Microplásticos/toxicidade , Nanopartículas/toxicidade , Poliestirenos/toxicidade , Aerossóis , Animais , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Microplásticos/farmacocinética , Nanopartículas/metabolismo , Organização para a Cooperação e Desenvolvimento Econômico , Tamanho da Partícula , Poliestirenos/farmacocinética , Ratos , Ratos Sprague-Dawley , Testes de Função Respiratória , Propriedades de Superfície
19.
Part Fibre Toxicol ; 7: 20, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20691052

RESUMO

BACKGROUND: The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronic, consumer, medicinal, pesticide, and home products; however, silver nanoparticles remain a controversial area of research with respect to their toxicity in biological and ecological systems. RESULTS: This study tested the oral toxicity of silver nanoparticles (56 nm) over a period of 13 weeks (90 days) in F344 rats following Organization for Economic Cooperation and Development (OECD) test guideline 408 and Good Laboratory Practices (GLP). Five-week-old rats, weighing about 99 g for the males and 92 g for the females, were divided into four 4 groups (10 rats in each group): vehicle control, low-dose (30 mg/kg), middle-dose (125 mg/kg), and high-dose (500 mg/kg). After 90 days of exposure, clinical chemistry, hematology, histopathology, and silver distribution were studied. There was a significant decrease (P < 0.05) in the body weight of male rats after 4 weeks of exposure, although there were no significant changes in food or water consumption during the study period. Significant dose-dependent changes were found in alkaline phosphatase and cholesterol for the male and female rats, indicating that exposure to more than 125 mg/kg of silver nanoparticles may result in slight liver damage. Histopathologic examination revealed a higher incidence of bile-duct hyperplasia, with or without necrosis, fibrosis, and/or pigmentation, in treated animals. There was also a dose-dependent accumulation of silver in all tissues examined. A gender-related difference in the accumulation of silver was noted in the kidneys, with a twofold increase in female kidneys compared to male kidneys. CONCLUSIONS: The target organ for the silver nanoparticles was found to be the liver in both the male and female rats. A NOAEL (no observable adverse effect level) of 30 mg/kg and LOAEL (lowest observable adverse effect level) of 125 mg/kg are suggested from the present study.


Assuntos
Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Ductos Biliares/efeitos dos fármacos , Ductos Biliares/patologia , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Rim/metabolismo , Masculino , Nível de Efeito Adverso não Observado , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Prata/farmacocinética , Distribuição Tecidual
20.
Arch Toxicol ; 84(1): 63-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19756516

RESUMO

To investigate the effects of silver nanoparticles on the histological structure and properties of the mucosubstances in the intestinal mucosa, Sprague-Dawley rats were divided into four groups (10 rats in each group): vehicle control, low-dose group (30 mg/kg), middle-dose group (300 mg/kg), and high-dose group (1,000 mg/kg), and administered silver nanoparticles (60 nm) for 28 days, following OECD test guideline 407 and using GLP. The control sections contained no silver nanoparticles; however, the treated samples showed luminal and surface particles and the tissue also contained silver nanoparticles. A dose-dependent increased accumulation of silver nanoparticles was observed in the lamina propria in both the small and large intestine, and also in the tip of the upper villi in the ileum and protruding surface of the fold in the colon. The silver nanoparticle-treated rats exhibited higher numbers of goblet cells that had released their mucus granules than the controls, resulting in more mucus materials in the crypt lumen and ileal lumen. Moreover, cell shedding at the tip of the villi was frequent. Lower amounts of neutral and acidic mucins were found in the goblet cells in the silver nanoparticle-treated rats, plus the amount of sialomucins was increased, while the amount of sulfomucins was decreased. In particular, in the colon of the silver nanoparticle-treated rats, sialyated mucins were detected in the lamina propria, the connective tissue under the epithelia. Therefore, the present results suggest that silver nanoparticles induce the discharge of mucus granules and an abnormal mucus composition in the goblet cells in the intestines.


Assuntos
Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Mucinas/metabolismo , Prata/administração & dosagem , Animais , Colo/citologia , Colo/efeitos dos fármacos , Colo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Células Caliciformes/citologia , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Histocitoquímica , Íleo/citologia , Íleo/efeitos dos fármacos , Íleo/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Nanopartículas Metálicas/análise , Ratos , Ratos Sprague-Dawley , Reto/citologia , Reto/efeitos dos fármacos , Reto/metabolismo , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Sialomucinas/metabolismo , Prata/análise , Prata/metabolismo , Organismos Livres de Patógenos Específicos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA