Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EBioMedicine ; 99: 104897, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096687

RESUMO

BACKGROUND: Increasing evidence supports that antibodies can protect against active tuberculosis (TB) but knowledge of potentially protective antigens, especially in the airways, is limited. The main objective of this study was to identify antigen-specific airway and systemic immunoglobulin isotype responses associated with the outcome of controlled latent Mycobacterium tuberculosis (Mtb) infection (LTBI) versus uncontrolled infection (TB) in nonhuman primates. METHODS: In a case-control design, using non-parametric group comparisons with false discovery rate adjustments, we assessed antibodies in 57 cynomolgus macaques which, following low-dose airway Mtb infection, developed either LTBI or TB. We investigated airway and systemic IgG, IgA, and IgM responses in paired bronchoalveolar lavage and plasma samples prior to, two-, and 5-6-months post Mtb infection using an antigen-unbiased approach with Mtb glycan and proteome-wide microarrays. FINDINGS: Macaques that developed LTBI (n = 36) had significantly increased airway and plasma IgA reactivities to specific arabinomannan (AM) motifs prior to Mtb infection compared to those that developed TB (n = 21; p < 0.01, q < 0.05). Furthermore, LTBI macaques had higher plasma IgG reactivity to protein MTB32A (Rv0125) early post Mtb infection (p < 0.05) and increasing airway IgG responses to some proteins over time. INTERPRETATION: Our results support a protective role of pre-existing mucosal (lung) and systemic IgA to specific Mtb glycan motifs, suggesting that prior exposure to nontuberculous mycobacteria could be protective against TB. They further suggest that IgG to Mtb proteins early post infection could provide an additional protective mechanism. These findings could inform TB vaccine development strategies. FUNDING: NIH/NIAID AI117927, AI146329, and AI127173 to JMA.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Animais , Formação de Anticorpos , Antígenos de Bactérias , Imunoglobulina G , Polissacarídeos , Macaca , Primatas , Imunoglobulina A
2.
J Fungi (Basel) ; 10(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38786662

RESUMO

Valley Fever (VF), caused by fungi in the genus Coccidioides, is a prevalent disease in southwestern and western parts of the United States that affects both humans and animals, such as dogs. Although the immune responses to infection with Coccidioides spp. are not fully characterized, antibody-detection assays are used in conjunction with clinical presentation and radiologic findings to aid in the diagnosis of VF. These assays often use Complement Fixation (CF) and Tube Precipitin (TP) antigens as the main targets of IgG and IgM reactivity, respectively. Our group previously reported evidence of over 800 genes expressed at the protein level in C. posadasii. However, antibody reactivity to the majority of these proteins has never been explored. Using a new, high-throughput screening technology, the Nucleic Acid Programmable Protein Array (NAPPA), we screened serum specimens from dogs against 708 of these previously identified proteins for IgG reactivity. Serum from three separate groups of dogs was analyzed and revealed a small panel of proteins to be further characterized for immuno-reactivity. In addition to CF/CTS1 antigen, sera from most infected dogs showed antibody reactivity to endo-1,3-betaglucanase, peroxisomal matrix protein, and another novel reactive protein, CPSG_05795. These antigens may provide additional targets to aid in antibody-based diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA