Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(19): 3634-3652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34657531

RESUMO

Abnormal glucose homeostasis is linked to a variety of metabolic syndromes, such as insulin resistance, obesity, type-2 diabetes mellitus, hypertension and cardiovascular diseases. Maintenance of normal glucose homeostasis is important for the body to keep normal biological functions. As the major bioactive ingredient in chili peppers responsible for the pungent flavor, capsaicin has been reported to effectively improve glucose homeostasis with low cytotoxicity. In this review, the modulating effects of capsaicin on glucose homeostasis in cell models, animal models and human trials are summarized through both TRPV1 dependent and TRPV1 independent pathways. The relevant molecular mechanisms underlying its regulatory effects are also evaluated. Understanding the effects and mechanisms of capsaicin on glucose metabolism could provide theoretical evidence for its application in the food and pharmaceutical industries.


Assuntos
Capsaicina , Capsicum , Animais , Humanos , Capsaicina/farmacologia , Obesidade , Homeostase , Glucose
2.
Crit Rev Food Sci Nutr ; : 1-29, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37326362

RESUMO

The extensive health-promoting effects of Citri Reticulatae Pericarpium (CRP) have attracted researchers' interest. The difference in storage time, varieties and origin of CRP are closely related to the content of bioactive compounds they contain. The consitituent transformation mediated by environmental microorganisms (bacteria and fungi) and the production of new bioactive components during the storage process may be the main reason for 'the older, the better' of CRP. In addition, the gap in price between different varieties can be as large as 8 times, while the difference due to age can even reach 20 times, making the 'marketing young-CRP as old-CRP and counterfeiting origin' flood the entire market, seriously harming consumers' interests. However, so far, the research on CRP is relatively decentralized. In particular, a summary of the microbial transformation and authenticity identification of CRP has not been reported. Therefore, this review systematically summarized the recent advances on the main bioactive compounds, the major biological activities, the microbial transformation process, the structure, and content changes of the active substances during the transformation process, and authenticity identification of CRP. Furthermore, challenges and perspectives concerning the future research on CRP were proposed.

3.
Appl Opt ; 62(10): 2610-2616, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132810

RESUMO

It has long been a challenge to obtain high spectral and spatial resolution simultaneously for the field of measurement and detection. Here we present a measurement system based on single-pixel imaging with compressive sensing that can realize excellent spectral and spatial resolution at the same time, as well as data compression. Our method can achieve high spectral and spatial resolution, which is different from the mutually restrictive relationship between the two in traditional imaging. In our experiments, 301 spectral channels are obtained in the band of 420-780 nm with a spectral resolution of 1.2 nm and a spatial resolution of 1.11 mrad. A sampling rate of 12.5% for a 64×64p i x e l image is obtained by using compressive sensing, which also reduces the measurement time; thus, high spectral and spatial resolution are realized simultaneously, even at a low sampling rate.

4.
Opt Express ; 30(23): 42097-42113, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366670

RESUMO

Polarization-based dehazing methods can enhance the quality of haze images. However, existing methods tend to a manual selection of sky area and bias coefficient to estimate the degree of polarization (DoP) of the airlight, which leads to inaccurate estimation of the airlight. Aiming at the problem, a reconstruction algorithm based on the blind separation model of polarized orthogonal airlight is proposed. Importantly, the depth-dependent DoP of the airlight is automatically estimated without manual selection of sky area and bias coefficient. To reduce the interference of white objects on the estimation of airlight at infinity, an adaptive estimation method using the deviation between the DoP of the airlight and incident light is proposed. In order to accurate estimate the airlight from the airlight at infinity, a blind separation model of the airlight with multi-regularization constraints is established based on the decomposition of the airlight at infinity into a pair of polarized components with orthogonal angles. The experimental results show that the method effectively improves the visibility of scenes under different haze concentrations, especially in dense or heavy haze weather.

5.
Opt Express ; 30(2): 864-873, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209266

RESUMO

Image-based target tracking methods rely on continuous image acquisition and post-processing, which will result in low tracking efficiency. To realize real-time tracking of fast moving objects, we propose an image-free target tracking scheme based on the discrete cosine transform and single-pixel detection. Our method avoids calculating all the phase values, so the number of samples can be greatly reduced. Furthermore, complementary modulation is applied to reduce the measurement noise, and background subtraction is applied to enhance the contrast. The results of simulations and experiments demonstrate that the proposed scheme can accomplish the tracking task in a complex background with a sampling ratio of less than 0.59% of the Nyquist-Shannon criterion, thereby significantly reducing the measurement time. The tracking speed can reach 208 fps at a spatial resolution of 128 × 128 pixels with a tracking error of no more than one pixel. This technique provides a new idea for real-time tracking of fast-moving targets.

6.
Hematol Oncol ; 40(4): 554-566, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35416325

RESUMO

Sustained expression of B-cell receptor (BCR) critically contributes to the development of diffuse large B-cell lymphoma (DLBCL). However, little is known on the mechanism regulating BCR expression. In the present study, we explored the biological significance of functional intergenic repeating RNA element (FIRRE) in DLBCL and its regulation on BCR. Functional impacts of FIRRE on cell viability, transformation, and apoptosis were examined by MTT, colony formation, and flow cytometry, respectively. The interaction between FIRRE and polypyrimidine tract binding protein 1 (PTBP1) was identified by RNA pull-down and verified using RNA immunoprecipitation (RIP) assays. The effects of FIRRE and PTBP1 on Smurf2 mRNA were examined by RIP, RNA pull-down, and mRNA stability assays. Smurf2-mediated BCR ubiquitination was investigated using co-immunoprecipitation, ubiquitination, and protein stability assays. In vivo, xenograft models were used to assess the impacts of targeting FIRRE on DLBCL growth. FIRRE was specifically up-regulated in and essentially maintained multiple malignant behaviors of BCR-dependent DLBCL cells. Through the interaction with PTBP1, FIRRE promoted the mRNA decay of Smurf2, a ubiquitin ligase for the degradation BCR protein. Targeting FIRRE was sufficient to regulat Smurf2 and BCR expressions and inhibit DLBCL malignancy both in vivo and in vitro. FIRRE-PTBP1 interaction, by simulating Smurf2 mRNA decay and stabilizing BCR, promotes the development of DLBCL. Consequently, targeting this signaling mechanism may provide therapeutic benefits for DLBCL.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas , Linfoma Difuso de Grandes Células B , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Longo não Codificante , Receptores de Antígenos de Linfócitos B , Ubiquitina-Proteína Ligases , Linhagem Celular Tumoral , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Ligases/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Longo não Codificante/genética , RNA Mensageiro , Receptores de Antígenos de Linfócitos B/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35959723

RESUMO

Interest in the application of dietary bioactive compounds (DBC) in healthcare and pharmaceutical industries has motivated researchers to develop functional delivery systems (FDS) aiming to maximize their bioefficacy. As the direct and indirect health benefiting effects of DBC are acknowledged, traditional design principle of FDS aiming at improving the bioavailability of intact DBC is challenged by the updated one, where the maximized bioefficacy of DBC delivered by FDS will be achieved via rationally absorbed at target sites with proper metabolism pathways. This article briefly summarized the absorption and metabolic fates of orally digested DBC along with their direct and indirect mechanisms to perform health benefiting effects. Current strategies in designing the next generation FDS with an emphasis on their modulation effects on the distribution portion between the upper and lower digestive tract, portal vein and lymphatic absorption, human digestive and gut microbiota enzymatic mediated metabolism were highlighted. Updated research progresses of FDS in adjusting sensory attributes of food end products and inducing synergistic effects rooting from matrix materials and co-delivered cargos were also discussed. Challenges as well as future perspectives concerning the precise nutrition and the critical role of delivery systems in dietary intervention were proposed.

8.
Cell Biol Toxicol ; 38(6): 979-993, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34331612

RESUMO

BACKGROUND: Although long non-coding RNA (lncRNA) HCP plays essential roles in human cancers, its function and mechanism in multiple myeloma (MM) have not crystallized. METHODS: HCP5 level in MM was assessed through qRT-PCR. A series of functional investigations were conducted to evaluate the influences of HCP5 on proliferation and apoptosis. Bioinformatics analysis and RIP/RNA pull-down assays were carried out to determine the relationships among HCP5, miR-128-3p, and PLAGL2. Relative protein level was determined through Western blot. A xenograft tumor model was applied for validating the roles of HCP5/miR-128-3p/PLAGL2 axis in vivo. RESULTS: HCP5 was significantly increased in MM. HCP5 knockdown effectively thwarted the proliferative rate and cell cycle of MM cell lines and suppressed tumor growth. HCP5 regulated PLAGL2 expression by sponging miR-128-3p. PLAGL2 overexpression effectively rescued cells from influences by sh-HCP5 on cell proliferative and apoptotic rates. Additionally, HCP5 knockdown significantly inhibited Wnt/ß-catenin/cyclin D1 signaling, and these effects were eliminated by PLAGL2 overexpression. CONCLUSION: Our study revealed that HCP5/miR-128-3p/PLAGL2 is closely correlated to MM development by modulating Wnt/ß-catenin/cyclin D1 signaling. HCP5 promoted cell proliferation and tumor formation of MM cells by activating the Wnt/ß-catenin/CCND1 signaling pathway by sponging miR-128-3p to increase PLAGL2 expression.


Assuntos
MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mieloma Múltiplo/genética , Linhagem Celular Tumoral , Via de Sinalização Wnt/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Movimento Celular , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas de Ligação a RNA/metabolismo
9.
Small ; 16(36): e2001858, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32519440

RESUMO

The recent ban of titanium dioxide (TiO2 ) as a food additive (E171) in France intensified the controversy on safety of foodborne-TiO2 nanoparticles (NPs). This study determines the biological effects of TiO2 NPs and TiO2 (E171) in obese and non-obese mice. Oral consumption (0.1 wt% in diet for 8 weeks) of TiO2 (E171, 112 nm) and TiO2 NPs (33 nm) does not cause severe toxicity in mice, but significantly alters composition of gut microbiota, for example, increased abundance of Firmicutes phylum and decreased abundance of Bacteroidetes phylum and Bifidobacterium and Lactobacillus genera, which are accompanied by decreased cecal levels of short-chain fatty acids. Both TiO2 (E171) and TiO2 NPs increase abundance of pro-inflammatory immune cells and cytokines in the colonic mucosa, indicating an inflammatory state. Importantly, TiO2 NPs cause stronger colonic inflammation than TiO2 (E171), and obese mice are more susceptible to the effects. A microbiota transplant study demonstrates that altered fecal microbiota by TiO2 NPs directly mediate inflammatory responses in the mouse colon. Furthermore, proteomic analysis shows that TiO2 NPs cause more alterations in multiple pathways in the liver and colon of obese mice than non-obese mice. This study provides important information on the health effects of foodborne inorganic nanoparticles.


Assuntos
Colo , Disbiose , Microbioma Gastrointestinal , Nanopartículas Metálicas , Proteoma , Titânio , Animais , Colo/efeitos dos fármacos , Disbiose/induzido quimicamente , Contaminação de Alimentos , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/induzido quimicamente , Nanopartículas Metálicas/toxicidade , Camundongos , Camundongos Obesos , Proteoma/efeitos dos fármacos , Proteômica , Titânio/toxicidade
10.
Carcinogenesis ; 38(4): 455-464, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28207072

RESUMO

Different cancer chemopreventive agents may act synergistically and their combination may produce enhanced protective effects against carcinogenesis than each individual agent alone. Herein, we investigated the chemopreventive effects of nobiletin (NBT, a citrus polymethoxyflavone) and atorvastatin (ATST, a lipid-lowering drug) in colon cancer cells/macrophages and an azoxymethane (AOM)-induced colon carcinogenesis rat model. The results demonstrated that co-treatments of NBT/ATST produced enhanced growth inhibitory and anti-inflammatory effects on the colon cancer cells and macrophages, respectively. Isobologram analysis confirmed that these interactions between NBT and ATST were synergistic. NBT/ATST co-treatment also synergistically induced extensive cell cycle arrest and apoptosis in colon cancer cells. Oral administration of NBT (0.1%, w/w in diet) or ATST (0.04%, w/w in diet) significantly decreased colonic tumor incidence and multiplicity in AOM-treated rats. Most importantly, co-treatment of NBT/ATST at their half doses (0.05% NBT + 0.02% ATST, w/w in diet) resulted in even stronger inhibitory effects on colonic tumor incidence and multiplicity than did NBT or ATST alone at higher doses. Statistical analysis confirmed that the enhanced chemopreventive activities against colon carcinogenesis in rats by the NBT/ATST combination were highly synergistic. Our results further demonstrated that NBT/ATST co-treatment profoundly modulated key cellular signaling regulators associated with inflammation, cell proliferation, cell cycle progression, apoptosis, angiogenesis and metastasis in the colon of AOM-treated rats. In conclusion, for the first time, our results demonstrated a strong synergy in inhibiting colon carcinogenesis produced by the co-treatment of NBT and ATST, which provided a scientific basis for using NBT in combination with ATST for colon cancer chemoprevention in humans.


Assuntos
Anticarcinógenos/farmacologia , Atorvastatina/farmacologia , Carcinogênese/efeitos dos fármacos , Colo/efeitos dos fármacos , Neoplasias do Colo/prevenção & controle , Flavonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Azoximetano/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioprevenção/métodos , Colo/patologia , Neoplasias do Colo/patologia , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Células HT29 , Humanos , Masculino , Camundongos , Ratos , Ratos Endogâmicos F344
11.
Int J Biol Macromol ; 270(Pt 2): 132251, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729488

RESUMO

The gut plays a crucial role in the development and progression of metabolic disorders, particularly in relation to type 2 diabetes mellitus (T2DM). While a high intake of dietary fiber is inversely associated with the risk of T2DM, the specific effects of various dietary fibers on T2DM are not fully understood. This study investigated the anti-diabetic properties of fermented dietary fiber (FDF) derived from soy sauce residue in T2DM mice, demonstrating its ability to lower blood glucose levels and ameliorate insulin resistance. Our findings revealed that FDF could enhance hepatic glucose metabolism via the IRS-1/PI3K/AKT/mTOR pathway. Additionally, the anti-diabetic effect of FDF was correlated with alterations in gut microbiota composition in T2DM mice, promoting a healthier gut environment. Specifically, FDF increased the abundance of beneficial flora such as Dubosiella, Butyricimonas, Lachnospiraceae_NK4A136_group, Lactobacillus and Osillibacter, while reducing harmful bacteria including Bilophila, Parabacteroides and Enterorhabdus. Further analysis of microbial metabolites, including short-chain fatty acids (SCFAs) and bile acids (BAs), provided evidence of FDF's regulatory effects on cecal contents in T2DM mice. Importantly, FDF treatment significantly restored the G-protein-coupled receptors (GPRs) expression in the colon of T2DM mice. In conclusion, our study suggests that the anti-diabetic effects of FDF are associated with the regulation of both the liver-gut axis and the gut microbiota-SCFAs-GPRs axis.


Assuntos
Diabetes Mellitus Tipo 2 , Fibras na Dieta , Ácidos Graxos Voláteis , Fermentação , Microbioma Gastrointestinal , Hipoglicemiantes , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Alimentos de Soja , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Fibras na Dieta/farmacologia , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Ácidos Graxos Voláteis/metabolismo , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Resistência à Insulina , Fígado/metabolismo , Fígado/efeitos dos fármacos
12.
Abdom Radiol (NY) ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557768

RESUMO

PURPOSE: To investigate imaging findings on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) and prognosis of clear cell hepatocellular carcinoma (CCHCC) comparing with non-otherwise specified hepatocellular carcinoma (NOS-HCC). METHODS: The clinical, pathological and MR imaging features of 42 patients with CCHCC and 84 age-matched patients with NOS-HCC were retrospectively analyzed from January 2015 to October 2021. Univariate and multivariate logistic regression and Cox regression analyses were performed to identify independent diagnostic and prognostic factors for CCHCC. Disease-free survival (DFS) and overall survival (OS) were determined by Kaplan-Meier analysis. RESULTS: CCHCC showed fat content more frequently (P < 0.001) and relatively higher Edmondson tumor grade (P = 0.001) compared with NOS-HCC. The lesion-to-muscle ratio (LMR) and lesion-to-liver ratio (LLR) of CCHCC on pre-enhancement T1-weighted imaging (pre-T1WI) (P = 0.001, P = 0.003) and hepatobiliary phase (HBP) (P = 0.007, P = 0.048) were significantly higher than those of NOS-HCC. The area under the curve (AUC) for fat content, LLR on pre-T1WI and their combination with better diagnostic performance in predicting CCHCC were 0.678, 0.666, and 0.750, respectively. There was no statistically significant difference in clinical outcomes between CCHCC and NOS-HCC. Multivariate Cox analysis confirmed that tumor size > 2 cm and enhancing capsule were independent prognostic factors for DFS and OS among CCHCC patients. CONCLUSION: Fat content and adjusted lesion signal intensity on pre-T1WI and HBP could be used to differentiate CCHCC from NOS-HCC. CCHCC had similar prognosis with NOS-HCC.

13.
Food Funct ; 15(3): 1265-1278, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38196314

RESUMO

Nobiletin (NOB) exhibits significant biological activities and may be a potential dietary treatment for antibiotic-associated gut dysbiosis. In this study, mice were gavaged with 0.2 mL day-1 of 12.5 g L-1 cefuroxime (LFX) and 10 g L-1 levofloxacin (LVX) for a duration of 10 days, accompanied by 0.05% NOB to investigate the regulatory effect and potential mechanisms of NOB on antibiotic-induced intestinal microbiota disorder and intestinal barrier dysfunction. Our results indicated that dietary NOB improved the pathology of intestinal epithelial cells and the intestinal permeability by upregulating the expression of intestinal tight junction proteins (TJs) and the number of goblet cells. Furthermore, dietary NOB reduced the levels of serum lipopolysaccharide (LPS) and pro-inflammatory factors (TNF-α and IL-1ß), thereby facilitating the restoration of the intestinal mucosal barrier. Additionally, dietary NOB increased the abundance of beneficial bacteria f_Lachnospiraceae and regulated the metabolic disorders of short-chain fatty acids (SCFAs) and bile acids (BAs). Notably, NOB supplementation resulted in elevated levels of butyric acid and lithocholic acid (LCA), which contributed to the repair of the intestinal mucosal barrier function and the maintenance of intestinal homeostasis. Collectively, our results propose a healthy dietary strategy for the prevention or mitigation of antibiotic-associated gut dysbiosis by dietary NOB.


Assuntos
Flavonas , Microbioma Gastrointestinal , Enteropatias , Animais , Camundongos , Cefuroxima/efeitos adversos , Levofloxacino/efeitos adversos , Disbiose/induzido quimicamente , Enteropatias/microbiologia , Antibacterianos/efeitos adversos
14.
Environ Sci Pollut Res Int ; 30(51): 111481-111497, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37816960

RESUMO

This paper examines whether financial technology (FinTech) development affect household energy consumption. The proposed point that FinTech can reduce household energy consumption is theoretically discussed and empirically tested using data from the 2017 Digital Financial Inclusion Index, the 2018 China Family Panel Studies (CFPS), the 2018 China Environmental Statistical Yearbook and the 2018 China Science and Technology Statistical Yearbook. The results show that FinTech contributes to reducing household energy consumption. Several retests, including the instrumental variable, replacement sample and propensity score matching methods, prove its robustness. Mechanism tests show that investment in environmental governance and technological innovation promotion are the two main transmission channels. We also find that the reducing effect is more significant in the following groups: the low-middle income level classes, the eastern regional residents, those with bachelor's degrees and above, the those aged over 60 and rural residents. The outcomes of this paper call for government departments to positively guide FinTech development to reduce household energy consumption. From another perspective, the conclusions drawn from our analysis make a great reference value for countries and provide new ideas for Chinese carbon peaking and carbon neutralisation goals.


Assuntos
Conservação dos Recursos Naturais , Desenvolvimento Industrial , Política Ambiental , Tecnologia , Desenvolvimento Econômico , China , Carbono
15.
Food Funct ; 14(24): 10731-10746, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37933488

RESUMO

Antibiotic-associated diarrhea is mediated by antibiotic treatment and is usually caused by the disruption of the intestinal barrier, gut microbiota, and metabolic balance. To identify a dietary strategy that can mitigate the side effects of antibiotics, this study investigated the effect of tangeretin on antibiotic-associated diarrhea in C57BL/6 mice. The results revealed that dietary tangeretin significantly ameliorated symptoms of antibiotic-associated diarrhea, as evidenced by the decreased diarrhea status scores, the reduced fecal water content, the decreased caecum/body weight ratio, and the alleviated colonic tissue damage. Dietary tangeretin also exhibited a protective effect on the intestinal barrier function by upregulating the mRNA and protein expression of claudin-1 and ZO-1. Furthermore, analysis of the gut microbiota using 16S rRNA gene sequencing indicated that dietary tangeretin modulated the gut microbiota of mice with antibiotic-associated diarrhea via increasing the gut microbiota diversity and the abundance of beneficial bacteria, e.g., Lactobacillaceae and Ruminococcaceae, and decreasing the abundance of harmful bacteria, e.g., Enterococcus and Terrisporobacter. Additionally, dietary tangeretin restored the levels of short-chain fatty acids and modulated metabolic pathways by enriching purine metabolism, bile acid metabolism, ABC transporters, and choline metabolism in cancer. Collectively, these findings provide a solid scientific basis for the rational use of tangeretin as a preventive and therapeutic agent for antibiotic-associated diarrhea.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Função da Barreira Intestinal , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Diarreia/microbiologia , Antibacterianos/farmacologia , Homeostase
16.
Food Funct ; 14(13): 6248-6261, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37350159

RESUMO

This study investigated the preventive effect of 5-demethylnobiletin (5DN), a natural polymethoxyflavone found mainly in citrus fruits, on dextran sulfate sodium (DSS)-induced colitis in mice and explored its potential mechanisms. Our results indicated that dietary 5DN (0.05% w/w in diet) could alleviate colitis symptoms in DSS-treated mice by preventing body weight loss, reducing the disease activity index, decreasing the colon weight to colon length ratio, and lessening colon tissue damage. Additionally, 5DN inhibited the inflammatory response in colitis mice through decreasing the production of inflammatory cytokines. Immunohistochemical analysis revealed that 5DN could reverse the DSS-induced decrease in the expression of claudin-1 and ZO-1 to improve the intestinal barrier function. Furthermore, 5DN altered gut microbiota dysbiosis in DSS-treated mice via up-regulating the level of probiotics (Roseburia) and down-regulating the level of pathogenic bacteria (Clostridium, Parabacteroides, and Sutterella). Taken together, these data provided a solid scientific basis for utilizing 5DN as a therapeutic candidate in colitis and related diseases.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Camundongos , Sulfato de Dextrana/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo/metabolismo , Citocinas/metabolismo , Imunidade , Dieta , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
17.
Food Funct ; 14(9): 4414-4429, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37097253

RESUMO

5-Demethylnobiletin (5DN) is an important ingredient of citrus extract that is rich in polymethoxyflavones (PMFs). In this study, we systemically investigated the preventive effects of 5DN on antibiotic-associated intestinal disturbances. Experimental mice were gavaged 0.2 mL per day of the antibiotic cocktail (12.5 g L-1 cefuroxime and 10 g L-1 levofloxacin) for 10 days, accompanied by dietary 0.05% 5DN for 10 and 20 days. The results showed that the combination of cefuroxime and levofloxacin caused swelling of the cecum and injury to the colon tissue. Meanwhile, the balance of intestinal oxidative stress and the barrier function of mice was also damaged by the antibiotics through upregulation of the relative mRNA levels of superoxide dismutase 3 (SOD3), quinine oxidoreductase 1 (NQO1) and glutathione peroxidase 1 (GPX1), and downregulation of the relative protein levels of tight junction proteins (TJs). Moreover, antibiotic exposure led to disorder of the gut microbiota, particularly increased harmful bacteria (Proteobacteria) and decreased beneficial bacteria (Bacteroideta). However, dietary 5DN could reduce antibiotic-associated intestinal damage, evidenced by the results that 5DN alleviated gut oxidative damage and attenuated intestinal barrier injury via increasing the expression of TJs including occludin and zonula occluden1 (ZO1). Additionally, dietary 5DN modulated the composition of the gut microbiota in antibiotic-treated mice by increasing the relative levels of beneficial bacteria, such as Dubosiella and Lactobacillus. Moreover, PMFs increased the contents of isobutyric acid and butyric acid, which were almost eliminated by antibiotic exposure. In conclusion, 5DN could alleviate antibiotic-related imbalance of intestinal oxidative stress, barrier function damage, intestinal flora disorders and the reduction of short-chain fatty acids (SCFAs), which lays a foundation for exploring safer and more effective ways to prevent or mitigate antibiotic-associated intestinal damage.


Assuntos
Microbioma Gastrointestinal , Enteropatias , Animais , Camundongos , Antibacterianos/efeitos adversos , Intestinos/microbiologia , Cefuroxima/farmacologia , Levofloxacino/farmacologia , Disbiose , Colo , Enteropatias/microbiologia , Ácido Butírico/farmacologia , Bactérias/genética
18.
Nat Commun ; 14(1): 6627, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863913

RESUMO

Toll-like receptors (TLRs) are a class of proteins that play critical roles in recognizing pathogens and initiating innate immune responses. TASL, a recently identified innate immune adaptor protein for endolysosomal TLR7/8/9 signaling, is recruited by the lysosomal proton-coupled amino-acid transporter SLC15A4, and then activates IRF5, which in turn triggers the transcription of type I interferons and cytokines. Here, we report three cryo-electron microscopy (cryo-EM) structures of human SLC15A4 in the apo monomeric and dimeric state and as a TASL-bound complex. The apo forms are in an outward-facing conformation, with the dimeric form showing an extensive interface involving four cholesterol molecules. The structure of the TASL-bound complex reveals an unprecedented interaction mode with solute carriers. During the recruitment of TASL, SLC15A4 undergoes a conformational change from an outward-facing, lysosomal lumen-exposed state to an inward-facing state to form a binding pocket, allowing the N-terminal helix of TASL to be inserted into. Our findings provide insights into the molecular basis of regulatory switch involving a human solute carrier and offers an important framework for structure-guided drug discovery targeting SLC15A4-TASL-related human autoimmune diseases.


Assuntos
Transdução de Sinais , Receptores Toll-Like , Humanos , Microscopia Crioeletrônica , Receptores Toll-Like/metabolismo , Imunidade Inata , Lisossomos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
19.
Front Nutr ; 9: 879028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634407

RESUMO

Pomelo seed as a by-product from pomelo consumption is rich in bioactive compounds, however, a huge volume of pomelo seed was disposed as wastes, the comprehensive utilization of pomelo seed could not only generate valued-added products/ingredients, but also decrease the environmental pollution. In this study, the main active substance limonin in pomelo seed was considered as a high-value bioactive compound. The purification of limonin from pomelo seed was investigated, and the neuroprotective and mechanism were characterized. The UPLC-MS/MS results indicated that 29 compounds in pomelo seed were identified, including 14 flavonoids, 3 limonids, 9 phenols and 3 coumarins. Moreover, high purity of limonin was obtained by crystallization and preparative-HPLC. Furthermore, limonin pretreatment can antagonize the cell damage mediated by Aß25-35 in a concentration-dependent relationship. The regulation of Bax/Bcl-2, expression of caspase-3 protein and the activation of PI3K/Akt signaling pathway were observed in the cells pretreated with limonin. Treatment of PC12 cells with PI3K inhibitor LY294002 weakened the protective effect of limonin. These results indicated that limonin prevented Aß25-35-induced neurotoxicity by activating PI3K/Akt, and further inhibiting caspase-3 and up-regulating Bcl-2. This study enables comprehensive utilization of pomelo seed as by-product and offers a theoretical principle for a waste-to-wealth solution, such as potential health benefits of food ingredient and drug.

20.
J Control Release ; 349: 51-66, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35792187

RESUMO

The emerging concept that "the maximized therapeutic efficacy of encapsulates would be achieved by inducing appropriate absorption site and pharmacological signal pathways through smart intervention of targeted delivery systems" is quite intriguing in the field of drug delivery. Herein, we developed 6-gingerol (6G) loaded delivery system in the form of nanostructured lipid carriers (6G-NLC) or NLC imbedded microcapsule (6G-MC). The modulation effects of the constructed formulations on the digestive fate and functioning mechanisms of 6-gingerol on colitis were investigated. The small intestine dominant absorption of 6G-NLC differed significantly with the colorectal dominated accumulation of 6G-MC in terms of the site-specific release behavior, biodistribution and transit time. Moreover, 6G-NLC alleviated DSS-induced colitis primarily through interfering with the antioxidant/anti-inflammatory pathways and Firmicutes/Bacteroidetes ratio. Whereas, better therapeutic efficacy was achieved in 6G-MC via sustained release at site close to the colonic lesion, and triggering multiple mitigation mechanisms including enhancing the mucus barrier and immune homeostasis, maintaining the structure and diversity of gut microbiota and promoting the intestinal barrier function. This work confirmed that rational design of oral delivery system can flexibly interfere with the pharmacological function pathways of encapsulated cargos, guided by which the maximized and precise therapeutic efficacy could be achieved.


Assuntos
Colite , Nanoestruturas , Anti-Inflamatórios/uso terapêutico , Antioxidantes , Cápsulas , Catecóis , Colite/induzido quimicamente , Colite/tratamento farmacológico , Preparações de Ação Retardada , Portadores de Fármacos/química , Excipientes , Álcoois Graxos/química , Humanos , Nanoestruturas/química , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA