Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Microb Cell Fact ; 19(1): 17, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32000778

RESUMO

BACKGROUND: Citric acid, a commodity product of industrial biotechnology, is produced by fermentation of the filamentous fungus Aspergillus niger. A requirement for high-yield citric acid production is keeping the concentration of Mn2+ ions in the medium at or below 5 µg L-1. Understanding manganese metabolism in A. niger is therefore of critical importance to citric acid production. To this end, we investigated transport of Mn2+ ions in A. niger NRRL2270. RESULTS: we identified an A. niger gene (dmtA; NRRL3_07789), predicted to encode a transmembrane protein, with high sequence identity to the yeast manganese transporters Smf1p and Smf2p. Deletion of dmtA in A. niger eliminated the intake of Mn2+ at low (5 µg L-1) external Mn2+ concentration, and reduced the intake of Mn2+ at high (> 100 µg L-1) external Mn2+ concentration. Compared to the parent strain, overexpression of dmtA increased Mn2+ intake at both low and high external Mn2+ concentrations. Cultivation of the parent strain under Mn2+ ions limitation conditions (5 µg L-1) reduced germination and led to the formation of stubby, swollen hyphae that formed compact pellets. Deletion of dmtA caused defects in germination and hyphal morphology even in the presence of 100 µg L-1 Mn2+, while overexpression of dmtA led to enhanced germination and normal hyphal morphology at limiting Mn2+ concentration. Growth of both the parent and the deletion strains under citric acid producing conditions resulted in molar yields (Yp/s) of citric acid of > 0.8, although the deletion strain produced ~ 30% less biomass. This yield was reduced only by 20% in the presence of 100 µg L-1 Mn2+, whereas production by the parent strain was reduced by 60%. The Yp/s of the overexpressing strain was 17% of that of the parent strain, irrespective of the concentrations of external Mn2+. CONCLUSIONS: Our results demonstrate that dmtA is physiologically important in the transport of Mn2+ ions in A. niger, and manipulation of its expression modulates citric acid overflow.


Assuntos
Aspergillus niger/metabolismo , Ácido Cítrico/metabolismo , Proteínas Fúngicas/fisiologia , Manganês/metabolismo , Metiltransferases/fisiologia , Biotecnologia/métodos , Fermentação , Proteínas Fúngicas/genética , Mutação com Perda de Função , Metiltransferases/genética
2.
Ann Nutr Metab ; 75(1): 16-23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242484

RESUMO

BACKGROUND: The standard, lifelong therapy of phenylketonuria (PKU) is a natural protein-restricted diet complemented with phenylalanine (Phe)-free L-amino acid mixtures that provide the daily necessary micronutrients. OBJECTIVE: To assess thyroid function and structure and the iodine status of early-treated adult PKU (ETPKU) patients in Hungary. METHODS: Sixty-nine PKU patients (aged 18-41 years) and 50 healthy controls were enrolled in the study. Thyroid hormones, serum thyroglobulin, thyroid antibodies, urinary iodine, and selenium concentrations were measured, and thyroid ultrasound was performed. RESULTS: The incidence of thyroid dysfunction was infrequent (n = 2). Blood Phe was negatively correlated with thyroid-stimulating hormone (TSH), and PKU patients had higher free thyroxine and lower TSH levels than healthy controls. Although optimal iodine status was found in the entire PKU population, by dividing the patients according to their therapy compliance, we observed that lower therapy adherence was associated with mild iodine deficiency and lower urinary selenium levels. CONCLUSIONS: The results of this study suggest that iodine status is strongly influenced by the adherence to therapy in ETPKU patients. No or not enough medical food consumption combined with a low-Phe diet can lead to subclinical iodine deficiency.


Assuntos
Iodo/deficiência , Cooperação do Paciente , Fenilcetonúrias/dietoterapia , Fenilcetonúrias/fisiopatologia , Glândula Tireoide/fisiopatologia , Adulto , Estudos de Casos e Controles , Dieta com Restrição de Proteínas , Feminino , Humanos , Hungria , Iodo/urina , Masculino , Fenilalanina/sangue , Estudos Prospectivos , Selênio/urina , Tireoglobulina/sangue , Glândula Tireoide/diagnóstico por imagem , Tireotropina/sangue , Tiroxina/sangue , Adulto Jovem
3.
Appl Microbiol Biotechnol ; 102(20): 8799-8808, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30141084

RESUMO

Itaconic acid is a five-carbon dicarboxylic acid with an unsaturated alkene bond, frequently used as a building block for the industrial production of a variety of synthetic polymers. It is also one of the major products of fungal "overflow metabolism" which can be produced in submerged fermentations of the filamentous fungus Aspergillus terreus. At the present, molar yields of itaconate are lower than those obtained in citric acid production in Aspergillus niger. Here, we have studied the possibility that the yield may be limited by the oxygen supply during fermentation and hence tested the effect of the dissolved oxygen concentration on the itaconic acid formation rate and yield in lab-scale bioreactors. The data show that a dissolved oxygen concentration of 2% saturation was sufficient for maximal biomass formation. Raising it to 30% saturation had no effect on biomass formation or the growth rate, but the itaconate yield augmented substantially from 0.53 to 0.85 mol itaconate/mol glucose. Furthermore, the volumetric and specific rates of itaconic acid formation ameliorated by as much as 150% concurrent with faster glucose consumption, shortening the fermentation time by 48 h. Further increasing the dissolved oxygen concentration over 30% saturation had no effect. Moreover, we show that this increase in itaconic acid production coincides with an increase in alternative respiration, circumventing the formation of surplus ATP by the cytochrome electron transport chain, as well as with increased levels of alternative oxidase transcript. We conclude that high(er) itaconic acid accumulation requires a dissolved oxygen concentration that is much higher than that needed for maximal biomass formation, and postulate that the induction of alternative respiration allows the necessary NADH reoxidation ratio without surplus ATP production to increase the glucose consumption and the flux through overflow metabolism.


Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/metabolismo , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Succinatos/metabolismo , Trifosfato de Adenosina/metabolismo , Aspergillus niger/genética , Aspergillus niger/crescimento & desenvolvimento , Biomassa , Reatores Biológicos/microbiologia , Ácido Cítrico/metabolismo , Fermentação , Proteínas Fúngicas/genética , Proteínas Mitocondriais/genética , Oxirredutases/genética , Oxigênio/análise , Proteínas de Plantas/genética
4.
Plant Foods Hum Nutr ; 72(2): 168-175, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28353095

RESUMO

Selenium deficiency in various degrees affects around 15% of the world's population, contributing to a variety of health problems. In this study, we examined the accumulation and biotransformation of soil applied Se-supplementation (sodium selenite and sodium selenate forms) at different concentrations, along with growth and yield formation of green pea, in a greenhouse experiment. Biotransformation of inorganic Se was evaluated using HPLC-ICP-MS for Se-species separation in the above ground parts of green pea. Results showed 3 mg kg-1 SeIV increased green pea growth biomarkers and also caused an increase in protein content in leaves by 17%. Selenomethionine represented 65% of the total selenium content in shoots, but was lower in pods and seeds (54 and 38%, respectively). Selenomethionine was the major species in all plant parts and the only organic selenium form in the lower SeIV concentration range. Elevating the dose of SeIV (≥30 mg kg-1) triggered detrimental effects on growth and protein content and caused higher accumulation of inorganic Se in forms of SeVI and SeIV. Selenocysteine, another organic form of proteinogenic amino acid, was determined when SeIV (≥10 mg kg-1) was applied in higher concentrations. Thus, agronomic biofortification using the appropriate chemical form and concentration of Se will have positive effects on green pea growth and its enriched shoots and seeds provide a value-added protein source for livestock and humans with significant increased selenomethionine.


Assuntos
Suplementos Nutricionais , Pisum sativum/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Selênio/metabolismo , Animais , Biotransformação , Humanos , Gado , Compostos Organosselênicos/análise , Compostos Organosselênicos/metabolismo , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Ácido Selênico/metabolismo , Selênio/análise , Selenometionina/análise , Selenometionina/metabolismo , Selenito de Sódio/metabolismo
5.
Magy Onkol ; 67(2): 154-160, 2023 Jun 13.
Artigo em Húngaro | MEDLINE | ID: mdl-37314077

RESUMO

Genetic testing for prostate cancer (PC) is becoming more widely used in the clinical routine, primarily due to the introduction of PARP inhibitors targeting genetically affected patients in their BRCA1/2 and other homologous recombination repair (HRR) genes. Simultaneously, the number of available therapies that are specifically targeting genetically defined PC subgroups is steadily increasing. As a result, the selection of treatment for PC patients is likely to require testing of multiple genes to enable more specific treatment sequences that consider the genetic characteristics of the tumor. Some of the mutations discovered by genetic testing may be hereditary, necessitating the use of germline testing from normal tissue, which is only permitted within the framework of clinical counseling. This change in PC care requires the collaboration by multiple specialists, including experts in molecular pathology, bioinformatics, biology, and genetic counseling. In this review, we aim to provide an overview on the currently relevant genetic alterations in PC for therapeutic purposes and their implications for familial testing.


Assuntos
Proteína BRCA1 , Neoplasias da Próstata , Masculino , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Patrimônio Genético
6.
Talanta ; 233: 122613, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215096

RESUMO

One of the aims of this study was to improve the sample throughput of a microwave-assisted closed vessel digestion system by using small quartz vials in polytetrafluoroethylene (PTFE) vessels for the sample preparation of raw propolis samples in small amounts. The digested samples were measured by inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) analyzing 36 elements. Limit of detection was low enough to measure all the elements, with the exception of La, in all raw propolis samples. There were no cross-contamination between the quartz vials, therefore independent samples can be prepared in the same PTFE vessel. Accuracy of the method was checked by spike recoveries and by analyzing BCR 189 wholemeal flour and two plant samples from a collaborative study. The means of RSDs were 5.3%-14.4% in the case of measured elements. The sample throughput was increased by three times using quartz vials in PFTE vessels besides matching with the requirements of green chemistry. Another goal was the characterization of the element content and thereby geographical identification of Hungarian raw propolis. In total, 252 samples were analyzed and their statistical characteristics were described. We cannot find globally such results of propolis element content, which is representing one country and with such a number of elements and samples. All the elements have positive skew and positive kurtosis. Concentration range is above two orders of magnitude in the case of Ba, Zn, V, Cr, Ni, Cd and Eu elements. The decimal logarithm of element concentrations was used for geographical identification of raw propolis samples originating from seven regions of Hungary by linear discriminant analysis (LDA). Grouping of the samples of the Northern Great Plain was the most effective with 96.3% and 77.8% based on the original method and the cross validation, respectively. The same indicators for all the groups are 76.6% and 61.5%.


Assuntos
Própole , Oligoelementos , Hungria , Espectrometria de Massas , Micro-Ondas , Quartzo , Análise Espectral , Oligoelementos/análise
7.
Plants (Basel) ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201671

RESUMO

A pot experiment, under greenhouse conditions, was carried out aiming at investigating the agronomic biofortification of alfalfa (Medicago sativa L.) with Se and monitoring the Se uptake and accumulation dynamics within four consecutive harvests within the same growing season. Two ionic Se forms, i.e., sodium selenate (Se (VI)) and sodium selenite (Se (IV)), were applied once at a rate of 1, 10, and 50 mg kg-1 (added on Se basis), while 10 and 50 mg L-1 of a red elemental Se (red Se0) were used; all Se treatments were added as soil application. Application of Se (VI) at the rate of 50 mg kg-1 was toxic to alfalfa plants. The effect of Se forms on Se accumulation in alfalfa tissues, regardless of the applied Se concentration, follows: Se (VI) > Se (IV) > red Se0. The leaf, in general, possessed higher total Se content than the stem in all the treatments. The accumulation of Se in stem and leaf tissues showed a gradual decline between the harvests, especially for plants treated with either Se (VI) or Se (IV); however, the chemically synthesized red Se0 showed different results. The treatment of 10 mg kg-1 Se (VI) resulted in the highest total Se content in stem (202.5 and 98.0 µg g-1) and leaf (643.4 and 284.5 µg g-1) in the 1st and 2nd harvests, respectively. Similar tendency is reported for the Se (IV)-treated plants. Otherwise, the application of red Se0 resulted in a lower Se uptake; however, less fluctuation in total Se content between the four harvests was noticed compared to the ionic Se forms. The Se forms in stem and leaf of alfalfa extracted by water and subsequently by protease XIV enzyme were measured by strong anion exchange (SAX) HPLC-ICP-MS. The major Se forms in our samples were selenomethionine (SeMet) and Se (VI), while neither selenocysteine (SeCys) nor Se (IV) was detected. In water extract, however, Se (VI) was the major Se form, while SeMet was the predominant form in the enzyme extract. Yet, Se (VI) and SeMet contents declined within the harvests, except in stem of plants treated with 50 mg L-1 red Se0. The highest stem or leaf SeMet yield %, in all harvests, corresponded to the treatment of 50 mg L-1 red Se0. For instance, 63.6% (in stem) and 38.0% (in leaf) were calculated for SeMet yield % in the 4th harvest of plants treated with 50 mg L-1 red Se0. Our results provide information about uptake and accumulation dynamics of different ionic Se forms in case of multiple-harvested alfalfa, which, besides being a good model plant, is an important target plant species in green biorefining.

8.
Sci Total Environ ; 703: 135041, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767332

RESUMO

Cardamine violifolia (family Brassicaceae) is the first discovered selenium hyperaccumulator from the genus Cardamine with unique properties in terms of selenium accumulation, i.e., high abundance of selenolanthionine. In our study, a fully comprehensive experiment was conducted with the comparison of a non-hyperaccumulator Cardamine species, Cardamine pratensis, covering growth characteristics, chlorophyll fluorescence, spatial selenium/sulfur distribution patterns through elemental analyses (synchrotron-based X-Ray Fluorescence and ICP-OES) and speciation data through selenium K-edge micro X-ray absorption near-edge structure analysis (µXANES) and strong cation exchange (SCX)-ICP-MS. The results revealed remarkable differences in contrast to other selenium hyperaccumulators as neither Cardamine species showed evidence of growth stimulation by selenium. Also, selenite uptake was not inhibited by phosphate for either of the Cardamine species. Sulfate inhibited selenate uptake, but the two Cardamine species did not show any difference in this respect. However, µXRF derived speciation maps and selenium/sulfur uptake characteristics provided results that are similar to other formerly reported hyperaccumulator and non-hyperaccumulator Brassicaceae species. µXANES showed organic selenium, "C-Se-C", in seedlings of both species and also in mature C. violifolia plants. In contrast, selenate-supplied mature C. pratensis contained approximately half "C-Se-C" and half selenate. SCX-ICP-MS data showed evidence of the lack of selenocystine in any of the Cardamine plant extracts. Thus, C. violifolia shows clear selenium-related physiological and biochemical differences compared to C. pratensis and other selenium hyperaccumulators.


Assuntos
Cardamine/metabolismo , Selênio/metabolismo , Poluentes do Solo/metabolismo , Brassicaceae
9.
Front Microbiol ; 10: 1589, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338087

RESUMO

Itaconic acid is used as a bio-based, renewable building block in the polymer industry. It is produced by submerged fermentations of the filamentous fungus Aspergillus terreus from molasses or starch, but research over the efficient utilization of non-food, lignocellulosic plant biomass is soaring. The objective of this study was to test whether the application of two key cultivation parameters for obtaining itaconic acid from D-glucose in high yields - Mn2+ ion deficiency and high concentration of the carbon source - would also occur on D-xylose, the principal monomer of lignocellulose. To this end, a carbon and energy balance for itaconic acid formation was established, which is 0.83 moles/mole D-xylose. The effect of Mn2+ ions on itaconic acid formation was indeed similar to that on D-glucose and maximal yields were obtained below 3 µg L-1 Mn2+ ions, which were, however, only 0.63 moles of itaconic acid per mole D-xylose. In contrast to the case on D-glucose, increasing D-xylose concentration over 50 g L-1 did not change the above yield. By-products such as xylitol and α-ketoglutarate were found, but in total they remained below 2% of the concentration of D-xylose. Mass balance of the fermentation with 110 g L-1 D-xylose revealed that >95% of the carbon from D-xylose was accounted as biomass, itaconic acid, and the carbon dioxide released in the last step of itaconic acid biosynthesis. Our data show that the efficiency of biomass formation is the critical parameter for itaconic acid yield from D-xylose under otherwise optimal conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA