Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Acta Crystallogr C ; 57(Pt 5): 564-5, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11353252

RESUMO

In the crystal structure of the title charge-transfer complex, namely trans-stilbene-2,2'-(2,3,5,6-tetrafluorobenzene-1,4-diylidene)propanedinitrile (1/1) (trans-STB-TCNQF(4)), C(14)H(12).C(12)F(4)N(4), the planar STB and TCNQF(4) molecules are stacked alternately. The structure is not isostructural with that of STB-TCNQ. No anomaly was found in the displacement parameters of any atoms, while the bond length of the central C=C moiety was shorter than the corresponding bond in ethylene. This suggests that the central C=C moiety of the STB molecule vibrates with a large amplitude, similar to the case in free STB and STB-TCNQ.

3.
Inorg Chem ; 40(15): 3805-9, 2001 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-11442380

RESUMO

Heat capacities of the spin crossover complex [Fe(2-pic)3]Cl(2)*MeOH (2-pic: 2-picolylamine or 2-aminomethylpyridine) were measured with an adiabatic calorimeter between 12 and 355 K. A broad heat capacity peak, starting from approximately 80 K, culminating at approximately 150 K, and terminating at approximately 250 K, was observed. The temperature range of the heat capacity anomaly corresponds to that where the low-spin and high-spin states coexist in the 57Fe Mössbauer spectra. The enthalpy and entropy changes arising from the heat capacity anomaly were 8.88 kJ x mol(-1) and 59.5 J x K(-1) x mol(-1), respectively. The entropy gain was much larger than the contribution expected from the change in the spin-manifold R ln 5 (13.4 J x K(-1) x mol(-1)) where R is the gas constant. The remaining entropy gain is attributed to the contribution from the change in the internal vibrations. On the basis of the domain model, the number of molecules per domain was found to be very close to unity, implying a very weak cooperativity in the spin crossover occurring in the solid state of this complex.

4.
Biopolymers ; 36(6): 803-10, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8555424

RESUMO

Schizophyllan exists in aqueous solution as a triple helix, which is intact at room temperature. Its aqueous solution forms some ordered structure at low temperatures but undergoes a sharp transition to a disordered structure as the temperature is raised. The transition temperature Tc is about 7 and 18 degrees C for H2O and D2O solutions, respectively. This transition was followed by time-domain reflectometry to investigate dynamic aspects of the transition. In addition to a major peak around 10 GHz, the dielectric dispersion curve of a 20 wt % schizophyllan in D2O exhibited a small peak around 100 MHz below Tc and around 10 MHz above Tc. The major peak is due to bulk water, whereas the 100 MHz peak is assigned to "bound" or "structured" water, and that around 10 MHz to side-chain glucose residues. However, unlike usual bound water reported for biopolymer solutions, this "structured" water disappears abruptly when the temperature becomes close to Tc without accompanying a conformational transition of the main chain. The above assignment is consistent with the structure of the ordered phase derived from previous static data that it consists of side-chain glucose residues along with nearby water molecules surrounding the helix core that are interacting with each other loosely through hydrogen bonds, and spreads radially only a layer of one or two water molecules but a long distance along the helix axis.


Assuntos
Sizofirano/química , Configuração de Carboidratos , Sequência de Carboidratos , Fenômenos Químicos , Físico-Química , Eletroquímica , Dados de Sequência Molecular , Soluções , Água/química
5.
Inorg Chem ; 40(26): 6632-6, 2001 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-11735472

RESUMO

Accurate heat capacities of the single-molecule magnet [Mn(12)O(12)(O(2)CEt)(16)(H(2)O)(3)] were measured from 0.3 to 311 K by adiabatic calorimetry without an external magnetic field. Heat-capacity anomalies were separated by assuming several contributions including lattice vibration, magnetic anisotropy, and hyperfine splitting. Among them, a tiny thermal anomaly between 1 and 2 K is attributable to the presence of Jahn-Teller isomers. The heat capacities of the polycrystalline sample were also measured with applied magnetic fields from 0 to 9 T in the 2-20 K temperature region by the relaxation method. With an applied magnetic field of up to 2 T, a steplike heat-capacity anomaly was observed around the blocking temperature T(B) approximately 3.5 K. The magnitude of the anomaly reached a maximum at 0.7 T. With a further increase in the magnetic field, the step was decreasing, and finally it disappeared above 3 T. The step at T(B) under 0.7 T can be roughly accounted for by assuming that a conversion between the up-spin and down-spin states is allowed above T(B) by phonon-assisted quantum tunneling, while it is less effective below T(B). Excess heat capacity under a magnetic field revealed a large heat-capacity hump around 14 K and 2 T, which would be attributed to a thermal excitation from the S = 9 ground state to the spin manifold with different S values, where S is the total spin quantum number.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA