Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Cybern ; 117(4-5): 345-361, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589728

RESUMO

The ability to sequentially learn multiple tasks without forgetting is a key skill of biological brains, whereas it represents a major challenge to the field of deep learning. To avoid catastrophic forgetting, various continual learning (CL) approaches have been devised. However, these usually require discrete task boundaries. This requirement seems biologically implausible and often limits the application of CL methods in the real world where tasks are not always well defined. Here, we take inspiration from neuroscience, where sparse, non-overlapping neuronal representations have been suggested to prevent catastrophic forgetting. As in the brain, we argue that these sparse representations should be chosen on the basis of feed forward (stimulus-specific) as well as top-down (context-specific) information. To implement such selective sparsity, we use a bio-plausible form of hierarchical credit assignment known as Deep Feedback Control (DFC) and combine it with a winner-take-all sparsity mechanism. In addition to sparsity, we introduce lateral recurrent connections within each layer to further protect previously learned representations. We evaluate the new sparse-recurrent version of DFC on the split-MNIST computer vision benchmark and show that only the combination of sparsity and intra-layer recurrent connections improves CL performance with respect to standard backpropagation. Our method achieves similar performance to well-known CL methods, such as Elastic Weight Consolidation and Synaptic Intelligence, without requiring information about task boundaries. Overall, we showcase the idea of adopting computational principles from the brain to derive new, task-free learning algorithms for CL.


Assuntos
Algoritmos , Redes Neurais de Computação , Encéfalo , Neurônios/fisiologia , Retroalimentação
2.
Entropy (Basel) ; 22(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33286485

RESUMO

In this work we explore encoding strategies learned by statistical models of sensory coding in noisy spiking networks. Early stages of sensory communication in neural systems can be viewed as encoding channels in the information-theoretic sense. However, neural populations face constraints not commonly considered in communications theory. Using restricted Boltzmann machines as a model of sensory encoding, we find that networks with sufficient capacity learn to balance precision and noise-robustness in order to adaptively communicate stimuli with varying information content. Mirroring variability suppression observed in sensory systems, informative stimuli are encoded with high precision, at the cost of more variable responses to frequent, hence less informative stimuli. Curiously, we also find that statistical criticality in the neural population code emerges at model sizes where the input statistics are well captured. These phenomena have well-defined thermodynamic interpretations, and we discuss their connection to prevailing theories of coding and statistical criticality in neural populations.

3.
Front Neurosci ; 16: 1068193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36636576

RESUMO

Event-based dynamic vision sensors provide very sparse output in the form of spikes, which makes them suitable for low-power applications. Convolutional spiking neural networks model such event-based data and develop their full energy-saving potential when deployed on asynchronous neuromorphic hardware. Event-based vision being a nascent field, the sensitivity of spiking neural networks to potentially malicious adversarial attacks has received little attention so far. We show how white-box adversarial attack algorithms can be adapted to the discrete and sparse nature of event-based visual data, and demonstrate smaller perturbation magnitudes at higher success rates than the current state-of-the-art algorithms. For the first time, we also verify the effectiveness of these perturbations directly on neuromorphic hardware. Finally, we discuss the properties of the resulting perturbations, the effect of adversarial training as a defense strategy, and future directions.

4.
Front Neurosci ; 14: 662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32694978

RESUMO

In the last few years, spiking neural networks (SNNs) have been demonstrated to perform on par with regular convolutional neural networks. Several works have proposed methods to convert a pre-trained CNN to a Spiking CNN without a significant sacrifice of performance. We demonstrate first that quantization-aware training of CNNs leads to better accuracy in SNNs. One of the benefits of converting CNNs to spiking CNNs is to leverage the sparse computation of SNNs and consequently perform equivalent computation at a lower energy consumption. Here we propose an optimization strategy to train efficient spiking networks with lower energy consumption, while maintaining similar accuracy levels. We demonstrate results on the MNIST-DVS and CIFAR-10 datasets.

5.
Adv Neurobiol ; 22: 171-184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073936

RESUMO

Reliable spike detection and sorting, the process of assigning each detected spike to its originating neuron, are essential steps in the analysis of extracellular electrical recordings from neurons. The volume and complexity of the data from recently developed large-scale, high-density microelectrode arrays and probes, which allow recording from thousands of channels simultaneously, substantially complicate this task conceptually and computationally. This chapter provides a summary and discussion of recently developed methods to tackle these challenges and discusses the important aspect of algorithm validation, and assessment of detection and sorting quality.


Assuntos
Potenciais de Ação , Eletrofisiologia/métodos , Eletrofisiologia/tendências , Neurônios/citologia , Neurônios/metabolismo , Algoritmos , Microeletrodos , Processamento de Sinais Assistido por Computador
6.
Cell Rep ; 18(10): 2521-2532, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273464

RESUMO

We present a method for automated spike sorting for recordings with high-density, large-scale multielectrode arrays. Exploiting the dense sampling of single neurons by multiple electrodes, an efficient, low-dimensional representation of detected spikes consisting of estimated spatial spike locations and dominant spike shape features is exploited for fast and reliable clustering into single units. Millions of events can be sorted in minutes, and the method is parallelized and scales better than quadratically with the number of detected spikes. Performance is demonstrated using recordings with a 4,096-channel array and validated using anatomical imaging, optogenetic stimulation, and model-based quality control. A comparison with semi-automated, shape-based spike sorting exposes significant limitations of conventional methods. Our approach demonstrates that it is feasible to reliably isolate the activity of up to thousands of neurons and that dense, multi-channel probes substantially aid reliable spike sorting.


Assuntos
Potenciais de Ação/fisiologia , Eletrofisiologia/instrumentação , Animais , Eletrodos , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Optogenética , Reprodutibilidade dos Testes , Células Ganglionares da Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA