Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562953

RESUMO

Isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) is a fast growing and highly heterogeneous tumor, often characterized by the presence of glioblastoma stem cells (GSCs). The plasticity of GSCs results in therapy resistance and impairs anti-tumor immune response by influencing immune cells in the tumor microenvironment (TME). Previously, ß-catenin was associated with stemness in GBM as well as with immune escape mechanisms. Here, we investigated the effect of ß-catenin on attracting monocytes towards GBM cells. In addition, we evaluated whether CCL2 is involved in ß-catenin crosstalk between monocytes and tumor cells. Our analysis revealed that shRNA targeting ß-catenin in GBMs reduces monocytes attraction and impacts CCL2 secretion. The addition of recombinant CCL2 restores peripheral blood mononuclear cells (PBMC) migration towards medium (TCM) conditioned by shß-catenin GBM cells. CCL2 knockdown in GBM cells shows similar effects and reduces monocyte migration to a similar extent as ß-catenin knockdown. When investigating the effect of CCL2 on ß-catenin activity, we found that CCL2 modulates components of the Wnt/ß-catenin pathway and alters the clonogenicity of GBM cells. In addition, the pharmacological ß-catenin inhibitor MSAB reduces active ß-catenin, downregulates the expression of associated genes and alters CCL2 secretion. Taken together, we showed that ß-catenin plays an important role in attracting monocytes towards GBM cells in vitro. We hypothesize that the interactions between ß-catenin and CCL2 contribute to maintenance of GSCs via modulating immune cell interaction and promoting GBM growth and recurrence.


Assuntos
Neoplasias Encefálicas , Quimiocina CCL2 , Glioblastoma , beta Catenina , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CCL2/genética , Quimiocina CCL2/farmacologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Monócitos/metabolismo , Microambiente Tumoral , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
2.
Br J Neurosurg ; 35(6): 736-742, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31407920

RESUMO

OBJECTIVE: Vaccination therapy using tumour antigen-loaded, autologous dendritic cells (DC) is a promising therapeutic approach alongside standard treatment for glioblastoma (GBM). However, reliable diagnostic criteria regarding therapy monitoring are not established. Here, we analysed the impact of additional 18F-fluoroethyl-tyrosine positron emission tomography (18F-FET PET) imaging following DC vaccination therapy. METHODS: We analysed data of GBM patients who received DC vaccination therapy. Following MRI diagnosis of tumour recurrence, additional static and dynamic 18F-FET PET imaging was performed. Vaccination was performed five times by intradermal injections, either weekly between concomitant radio/-chemotherapy and intermittent chemotherapy or after tumour recurrence, before re-radiation therapy. MRI and 18F-FET PET results were compared and correlated with clinical data. RESULTS: Between 2003 and 2016, 5 patients were identified who received DC vaccination and 18F-FET PET imaging (1 female/4 males; mean age: 44 ± 14 y). 3/5 patients showed congruent results of tumour progression. In three patients 18F-FET PET indicated treatment related changes, which was in contrast to MRI findings that indicated tumour progression. In these patients 18F-FET PET results could be confirmed by either neuropathological diagnosis or according to the RANO criteria. CONCLUSIONS: Despite the small patients number our results indicate an additional impact of 18F-FET PET for monitoring outcome following vaccination therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Células Dendríticas , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Humanos , Imunoterapia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/terapia , Tomografia por Emissão de Pósitrons , Tirosina , Vacinação
3.
J Biol Chem ; 289(16): 11068-11082, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24567328

RESUMO

Recruitment of mesenchymal stem cells (MSC) following cardiac injury, such as myocardial infarction, plays a critical role in tissue repair and may contribute to myocardial recovery. However, the mechanisms that regulate migration of MSC to the site of tissue damage remain elusive. Here, we demonstrate in vitro that activated platelets substantially inhibit recruitment of MSC toward apoptotic cardiac myocytes and fibroblasts. The alarmin high mobility group box 1 (HMGB1) was released by platelets upon activation and mediated inhibition of the cell death-dependent migratory response through Toll-like receptor (TLR)-4 expressed on the MSC. Migration of MSC to apoptotic cardiac myocytes and fibroblasts was driven by hepatocyte growth factor (HGF), and platelet activation was followed by HMGB1/TLR-4-dependent down-regulation of HGF receptor MET on MSC, thereby impairing HGF-driven MSC recruitment. We identify a novel mechanism by which platelets, upon activation, interfere with MSC recruitment to apoptotic cardiac cells, a process that may be of particular relevance for myocardial repair and regeneration.


Assuntos
Apoptose/fisiologia , Plaquetas/metabolismo , Movimento Celular/fisiologia , Regulação para Baixo/fisiologia , Fibroblastos/metabolismo , Proteína HMGB1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Ativação Plaquetária/fisiologia , Proteínas Proto-Oncogênicas c-met/biossíntese , Receptor 4 Toll-Like/metabolismo , Plaquetas/citologia , Fibroblastos/citologia , Proteína HMGB1/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Proteínas Proto-Oncogênicas c-met/genética , Regeneração/fisiologia , Receptor 4 Toll-Like/genética
4.
Methods Cell Biol ; 183: 1-31, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548408

RESUMO

Dendritic cell vaccination is a form of active immunotherapy that aims to exploit the crucial role of DC in the initiation of T-cell responses. Numerous vaccination trials have been conducted targeting various tumor entities, including glioblastoma, the most frequent and aggressive malignant brain tumor in adults. They have demonstrated feasibility and safety and suggest improved survival, associated with induction of anti-tumoral immunity. Here, we describe in detail a large-scale 2-step protocol for successive GMP-compliant generation of immature and mature dendritic cells, yielding a highly homogenous population of CD83+ mature DC expressing CD40, CD80, CD86 and HLA-DR at high density, lacking activity of the immunosuppressive enzyme indoleamine-2,3-dioxygenase, migrating towards the chemokine CCL19 and showing highly potent T-cell stimulatory activity. Loaded with autologous tumor lysate, these cells are currently being evaluated in a phase II controlled randomized clinical trial (GlioVax) in glioblastoma patients.


Assuntos
Glioblastoma , Monócitos , Adulto , Humanos , Diferenciação Celular , Células Dendríticas , Glioblastoma/terapia , Imunoterapia/métodos , Controle de Qualidade
5.
Cell Rep Med ; 5(1): 101377, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232703

RESUMO

Current immunotherapies provide limited benefits against T cell-depleted tumors, calling for therapeutic innovation. Using multi-omics integration of cancer patient data, we predict a type I interferon (IFN) responseHIGH state of dendritic cell (DC) vaccines, with efficacious clinical impact. However, preclinical DC vaccines recapitulating this state by combining immunogenic cancer cell death with induction of type I IFN responses fail to regress mouse tumors lacking T cell infiltrates. Here, in lymph nodes (LNs), instead of activating CD4+/CD8+ T cells, DCs stimulate immunosuppressive programmed death-ligand 1-positive (PD-L1+) LN-associated macrophages (LAMs). Moreover, DC vaccines also stimulate PD-L1+ tumor-associated macrophages (TAMs). This creates two anatomically distinct niches of PD-L1+ macrophages that suppress CD8+ T cells. Accordingly, a combination of PD-L1 blockade with DC vaccines achieves significant tumor regression by depleting PD-L1+ macrophages, suppressing myeloid inflammation, and de-inhibiting effector/stem-like memory T cells. Importantly, clinical DC vaccines also potentiate T cell-suppressive PD-L1+ TAMs in glioblastoma patients. We propose that a multimodal immunotherapy and vaccination regimen is mandatory to overcome T cell-depleted tumors.


Assuntos
Glioblastoma , Vacinas , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Antígeno B7-H1 , Macrófagos , Células Dendríticas , Linfonodos/metabolismo , Vacinas/metabolismo
6.
Biochem Biophys Res Commun ; 431(3): 428-32, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23333382

RESUMO

Hepatocyte-growth factor (HGF) is expressed by glioblastomas and contributes to their growth, migration and invasion. HGF also mediates migration of mesenchymal stem cells (MSC) to sites of apoptotic cell death. Moreover, MSC show tropism for glioblastomas, which is exploited in gene therapy to deliver the therapeutics to the tumor cells. Here, we have studied whether HGF contributes to the recruitment of MSC by glioblastoma cells and whether aminolaevulinic acid-mediated photodynamic therapy (ALA/PDT), a novel therapeutic approach that induces apoptosis in glioblastoma cells, affects HGF release and this migratory response. MSC expressed the HGF receptor MET and migrated towards U87 and U251 glioblastoma spheroids. Migration increased significantly when spheroids were subjected to ALA/PDT, which was associated with induction of apoptosis and up-regulation of HGF. Neutralizing HGF resulted in significant inhibition of MSC migration towards untreated as well as ALA/PDT-treated spheroids. Thus, glioblastoma cells express HGF, which contributes to the attraction of MSC. ALA/PDT induces apoptosis and augments HGF release causing enhanced MSC migration towards the tumor cells. ALA/PDT may therefore be exploited to improve targeting of MSC delivered gene therapy, but it may also constitute a risk in terms of beneficial effects for the tumor.


Assuntos
Ácido Aminolevulínico/farmacologia , Glioblastoma/patologia , Fator de Crescimento de Hepatócito/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Ácido Aminolevulínico/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Células-Tronco Mesenquimais/fisiologia , Fármacos Fotossensibilizantes/uso terapêutico , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
7.
Sci Transl Med ; 15(691): eadd1016, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043555

RESUMO

Clinically relevant immunological biomarkers that discriminate between diverse hypofunctional states of tumor-associated CD8+ T cells remain disputed. Using multiomics analysis of CD8+ T cell features across multiple patient cohorts and tumor types, we identified tumor niche-dependent exhausted and other types of hypofunctional CD8+ T cell states. CD8+ T cells in "supportive" niches, like melanoma or lung cancer, exhibited features of tumor reactivity-driven exhaustion (CD8+ TEX). These included a proficient effector memory phenotype, an expanded T cell receptor (TCR) repertoire linked to effector exhaustion signaling, and a cancer-relevant T cell-activating immunopeptidome composed of largely shared cancer antigens or neoantigens. In contrast, "nonsupportive" niches, like glioblastoma, were enriched for features of hypofunctionality distinct from canonical exhaustion. This included immature or insufficiently activated T cell states, high wound healing signatures, nonexpanded TCR repertoires linked to anti-inflammatory signaling, high T cell-recognizable self-epitopes, and an antiproliferative state linked to stress or prodeath responses. In situ spatial mapping of glioblastoma highlighted the prevalence of dysfunctional CD4+:CD8+ T cell interactions, whereas ex vivo single-cell secretome mapping of glioblastoma CD8+ T cells confirmed negligible effector functionality and a promyeloid, wound healing-like chemokine profile. Within immuno-oncology clinical trials, anti-programmed cell death protein 1 (PD-1) immunotherapy facilitated glioblastoma's tolerogenic disparities, whereas dendritic cell (DC) vaccines partly corrected them. Accordingly, recipients of a DC vaccine for glioblastoma had high effector memory CD8+ T cells and evidence of antigen-specific immunity. Collectively, we provide an atlas for assessing different CD8+ T cell hypofunctional states in immunogenic versus nonimmunogenic cancers.


Assuntos
Glioblastoma , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos , Glioblastoma/metabolismo , Multiômica , Receptores de Antígenos de Linfócitos T/metabolismo
8.
Oncoimmunology ; 11(1): 2096363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800158

RESUMO

Dendritic cell (DC)-based vaccination for cancer treatment has seen considerable development over recent decades. However, this field is currently in a state of flux toward niche-applications, owing to recent paradigm-shifts in immuno-oncology mobilized by T cell-targeting immunotherapies. DC vaccines are typically generated using autologous (patient-derived) DCs exposed to tumor-associated or -specific antigens (TAAs or TSAs), in the presence of immunostimulatory molecules to induce DC maturation, followed by reinfusion into patients. Accordingly, DC vaccines can induce TAA/TSA-specific CD8+/CD4+ T cell responses. Yet, DC vaccination still shows suboptimal anti-tumor efficacy in the clinic. Extensive efforts are ongoing to improve the immunogenicity and efficacy of DC vaccines, often by employing combinatorial chemo-immunotherapy regimens. In this Trial Watch, we summarize the recent preclinical and clinical developments in this field and discuss the ongoing trends and future perspectives of DC-based immunotherapy for oncological indications.


Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias , Vacinas Anticâncer/uso terapêutico , Células Dendríticas , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico
9.
Cell Mol Life Sci ; 67(2): 295-303, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19888551

RESUMO

Human bone marrow-derived mesenchymal stem cells (MSC) home to injured tissues and have regenerative capacity. In this study, we have investigated in vitro the influence of apoptotic and necrotic cell death, thus distinct types of tissue damage, on MSC migration. Concordant with an increased overall motility, MSC migrated towards apoptotic, but not vital or necrotic neuronal and cardiac cells. Hepatocyte growth factor (HGF) was expressed by the apoptotic cells only. MSC, in contrast, revealed expression of the HGF-receptor, c-Met. Blocking HGF bioactivity resulted in significant reduction of MSC migration. Moreover, recombinant HGF attracted MSC in a dose-dependent manner. Thus, apoptosis initiates chemoattraction of MSC via the HGF/c-Met axis, thereby linking tissue damage to the recruitment of cells with regenerative potential.


Assuntos
Movimento Celular , Fator de Crescimento de Hepatócito/fisiologia , Células-Tronco Mesenquimais/fisiologia , Miócitos Cardíacos/patologia , Neurônios/patologia , Regeneração , Apoptose , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/fisiologia , Necrose/metabolismo , Necrose/patologia , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-met/metabolismo
10.
Front Immunol ; 12: 770390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795675

RESUMO

Glioblastomas (GBM) are the most frequent and aggressive malignant primary brain tumor and remains a therapeutic challenge: even after multimodal therapy, median survival of patients is only 15 months. Dendritic cell vaccination (DCV) is an active immunotherapy that aims at inducing an antitumoral immune response. Numerous DCV trials have been performed, vaccinating hundreds of GBM patients and confirming feasibility and safety. Many of these studies reported induction of an antitumoral immune response and indicated improved survival after DCV. However, two controlled randomized trials failed to detect a survival benefit. This raises the question of whether the promising concept of DCV may not hold true or whether we are not yet realizing the full potential of this therapeutic approach. Here, we discuss the results of recent vaccination trials, relevant parameters of the vaccines themselves and of their application, and possible synergies between DCV and other therapeutic approaches targeting the immunosuppressive microenvironment of GBM.


Assuntos
Neoplasias Encefálicas/terapia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Glioblastoma/terapia , Imunoterapia/métodos , Vacinação/métodos , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/prevenção & controle , Vacinas Anticâncer/administração & dosagem , Terapia Combinada , Glioblastoma/imunologia , Glioblastoma/prevenção & controle , Humanos , Avaliação de Resultados em Cuidados de Saúde , Intervalo Livre de Progressão , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
11.
Photodiagnosis Photodyn Ther ; 35: 102346, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34038764

RESUMO

BACKGROUND: Chordoma are uncommon aggressive tumors of the skeleton. Surgical resection is often subtotal and adjuvant treatment possibilities are limited as chordomas are highly chemo- and radioresistant. In the present study we examined the impact of 5-ALA PDT on different human chordoma cell lines. Furthermore, we investigated the variation of two parameters: (1.) 5-ALA incubation time and (2.) supplemental use of ciprofloxacin as iron chelator. METHODS: Experiments were realized in vitro with three different human chordoma cell lines: U-CH2, U-CH2B and U-CH14. After pre-incubation for 24 h with various concentrations of ciprofloxacin (1.5 - 5.0 µg/ml), different amounts of 5-ALA (15 - 50 µg/ml) were applied to the cells either for a brief (4 h) or a long (6 h) incubation time. Subsequently cells were exposed to photodynamic radiation. Cell viability was exploited by WST-1 assay. Thus, for each of the three cell lines, two drug combinations (ciprofloxacin plus 5-ALA and 5-ALA only) and two incubation times (short, 4 h and long, 6 h) were tested. Negative control groups were also examined. RESULTS: Supplemental use of ciprofloxacin led to increased cell death in each of the cell lines. Different 5-ALA incubation times (4 h vs. 6 h) showed no significant differences in cell viability except for U-CH2. CONCLUSION: Ciprofloxacin as an ordinary applied antibiotic, enhanced the effect of 5-ALA PDT on different human chordoma cell lines in vitro. The impact was dependent on the dose of ciprofloxacin-5-ALA. There were no notable differences for the tested 5-ALA incubation times. In human chordoma cell lines 5-ALA PDT may effectively be amended by ciprofloxacin.


Assuntos
Cordoma , Fotoquimioterapia , Ácido Aminolevulínico/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Cordoma/tratamento farmacológico , Ciprofloxacina/farmacologia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia
12.
J Exp Med ; 200(2): 123-35, 2004 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-15263023

RESUMO

Here a new, intrinsically pluripotent, CD45-negative population from human cord blood, termed unrestricted somatic stem cells (USSCs) is described. This rare population grows adherently and can be expanded to 10(15) cells without losing pluripotency. In vitro USSCs showed homogeneous differentiation into osteoblasts, chondroblasts, adipocytes, and hematopoietic and neural cells including astrocytes and neurons that express neurofilament, sodium channel protein, and various neurotransmitter phenotypes. Stereotactic implantation of USSCs into intact adult rat brain revealed that human Tau-positive cells persisted for up to 3 mo and showed migratory activity and a typical neuron-like morphology. In vivo differentiation of USSCs along mesodermal and endodermal pathways was demonstrated in animal models. Bony reconstitution was observed after transplantation of USSC-loaded calcium phosphate cylinders in nude rat femurs. Chondrogenesis occurred after transplanting cell-loaded gelfoam sponges into nude mice. Transplantation of USSCs in a noninjury model, the preimmune fetal sheep, resulted in up to 5% human hematopoietic engraftment. More than 20% albumin-producing human parenchymal hepatic cells with absence of cell fusion and substantial numbers of human cardiomyocytes in both atria and ventricles of the sheep heart were detected many months after USSC transplantation. No tumor formation was observed in any of these animals.


Assuntos
Linhagem Celular , Sangue Fetal/citologia , Placenta/irrigação sanguínea , Células-Tronco/citologia , Adipócitos/citologia , Albuminas/metabolismo , Animais , Western Blotting , Osso e Ossos/citologia , Técnicas de Cultura de Células , Diferenciação Celular , Divisão Celular , Transplante de Células , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Fêmur/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Hipocampo/citologia , Humanos , Imunofenotipagem , Antígenos Comuns de Leucócito/biossíntese , Leucócitos Mononucleares/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Neurotransmissores , Osteoblastos/metabolismo , Fenótipo , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos , Fatores de Tempo , Veias Umbilicais
13.
J Cell Mol Med ; 13(8B): 2465-2475, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19175687

RESUMO

Unrestricted somatic stem cells (USSC) have the potential to differentiate into tissues derived from all three germinal layers and therefore hold promise for use in regenerative therapies. Furthermore, they have haematopoietic stromal activity, a characteristic that may be exploited to enhance haematopoietic engraftment. Both applications may require USSC to be used in an allogeneic, HLA-mismatched setting. We have therefore studied their in vitro interaction with cellular immunity. USSC showed no allostimulatory activity and caused only minimal inhibition of allogeneic T-cell responses. However, following pre-stimulation with IFNgamma and TNFalpha, they inhibited T-cell proliferation in an indoleamine 2, 3-dioxygenase-dependent manner and suppressed graft-versus-host type reactions. In addition, USSC inhibited DC maturation and function. This inhibition was overridden by stronger DC maturation signals provided by IL-1beta, IL-6, PGE(2) and TNFalpha compared to TNFalpha alone. Pre-stimulation of USSC with IFNgamma and TNFalpha had a similar effect: Inhibition of DC maturation was no longer observed. Thus, USSC are conditionally immunosuppressive, and IFNgamma and TNFalpha constitute a switch, which regulates their immunological properties. They either suppress T-cell responses in the presence of both cytokines or in their absence block DC differentiation and function. These activities may contribute to fine-tuning the immune system especially at sites of tissue damage in order to ensure appropriate differentiation of USSC and subsequent tissue repair. Therapeutically, they may help to protect USSC and possibly their progeny from immune rejection.


Assuntos
Citocinas/fisiologia , Sangue Fetal , Imunidade Celular , Células-Tronco/citologia , Citometria de Fluxo , Reação Enxerto-Hospedeiro , Humanos , Imunofenotipagem , Teste de Cultura Mista de Linfócitos
14.
J Photochem Photobiol B ; 189: 298-305, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30445362

RESUMO

BACKGROUND: Medulloblastoma (MB) is the most common malignant primary brain tumor of childhood. High risk patients still have a poor outcome, and especially young patients suffer from standard therapy induced sequelae. Therefore, other therapeutic options need to be explored. In glioblastoma (GBM), application of 5-aminolaevulinic acid (5-ALA) results in selective accumulation of protoporphyrin IX (PPIX) in the tumor cells, which can be exploited during fluorescence-guided surgery to increase the extent of resection or for photodynamic therapy (PDT) induced phototoxicity. It is not entirely clear, whether MB cells accumulate PPIX and are sensitive to PDT. METHODS: Human MYC-amplified (Med8A and D283) and non-amplified (UW228-2 and ONS76) MB cell lines were incubated for 2, 4 or 6 h with increasing doses (0-100 µg/ml) of 5-ALA, and PPIX accumulation was determined by flow cytometry. To assess sensitivity to 5-ALA/PDT, cells were incubated with 5-ALA and subsequently exposed to laser light of 635 nm wavelength (18.75 J/cm2). After an additional 24 h culture period, viability of cells was quantified using the WST-1 assay. Expression of ferrochelatase was detected by reverse transcription and quantitative polymerase chain reaction. Ferrochelatase activity was quantified by measuring the enzymatic conversion of PPIX to zinc-protoporphyrin. Expression of the ABCG2 transporter protein CD338 was detected by flow cytometry. RESULTS: All MB cell lines showed a time- and dose-dependent accumulation of PPIX after exposure to exogenous 5-ALA and became sensitive to 5-ALA/PDT-induced phototoxicity. PPIX accumulation was reduced compared to U373 GBM cells at shorter incubation periods and limiting 5-ALA doses. Moreover, not all MB cells became PPIX positive and overall phototoxicity was lower in the MB cell lines. Notably, the MYC-amplified MB cells demonstrated a more pronounced photosensitivity compared to their non-amplified counterparts. There was no difference in expression of ferrochelatase, but enzymatic activity appeared to be reduced in the MB cells compared to U373 GBM cells, whereas CD338 was expressed on the MB cells only. CONCLUSION: Medulloblastoma cell lines accumulate PPIX after application of 5-ALA and become sensitive to PDT, associated with low ferrochelatase expression and activity. Photosensitivity is more pronounced in MYC-amplified cell lines. In contrast to GBM cells, however, PPIX accumulation appears to be reduced, restricted to a subset of cells and associated with lower photosensitivity of the MB cell lines, possibly due to expression of the ABCG2 transporter protein CD338 on MB cells.


Assuntos
Meduloblastoma/patologia , Fotoquimioterapia/métodos , Protoporfirinas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Aminolevulínico/farmacologia , Linhagem Celular Tumoral , Ferroquelatase/metabolismo , Humanos
15.
Trials ; 19(1): 293, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29801515

RESUMO

BACKGROUND: Despite the combination of surgical resection, radio- and chemotherapy, median survival of glioblastoma multiforme (GBM) patients only slightly increased in the last years. Disease recurrence is definite with no effective therapy existing after tumor removal. Dendritic cell (DC) vaccination is a promising active immunotherapeutic approach. There is clear evidence that it is feasible, results in immunological anti-tumoral responses, and appears to be beneficial for survival and quality of life of GBM patients. Moreover, combining it with the standard therapy of GBM may allow exploiting synergies between the treatment modalities. In this randomized controlled trial, we seek to confirm these promising initial results. METHODS: One hundred and thirty-six newly diagnosed, isocitrate dehydrogenase wildtype GBM patients will be randomly allocated (1:1 ratio, stratified by O6-methylguanine-DNA-methyltransferase promotor methylation status) after near-complete resection in a multicenter, prospective phase II trial into two groups: (1) patients receiving the current therapeutic "gold standard" of radio/temozolomide chemotherapy and (2) patients receiving DC vaccination as an add-on to the standard therapy. A recruitment period of 30 months is anticipated; follow-up will be 2 years. The primary objective of the study is to compare overall survival (OS) between the two groups. Secondary objectives are comparing progression-free survival (PFS) and 6-, 12- and 24-month OS and PFS rates, the safety profile, overall and neurological performance and quality of life. DISCUSSION: Until now, close to 500 GBM patients have been treated with DC vaccination in clinical trials or on a compassionate-use basis. Results have been encouraging, but cannot provide robust evidence of clinical efficacy because studies have been non-controlled or patient numbers have been low. Therefore, a prospective, randomized phase II trial with a sufficiently large number of patients is now mandatory for clear evidence regarding the impact of DC vaccination on PFS and OS in GBM. TRIAL REGISTRATION: Protocol code: GlioVax, date of registration: 17. February 2017. Trial identifier: EudraCT-Number 2017-000304-14. German Registry for Clinical Studies, ID: DRKS00013248 (approved primary register in the WHO network) and at ClinicalTrials.gov , ID: NCT03395587 . Registered on 11 March 2017.


Assuntos
Neoplasias Encefálicas/terapia , Vacinas Anticâncer/administração & dosagem , Quimiorradioterapia , Células Dendríticas/transplante , Glioblastoma/terapia , Imunoterapia/métodos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/imunologia , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/mortalidade , Ensaios Clínicos Fase II como Assunto , Células Dendríticas/imunologia , Alemanha , Glioblastoma/imunologia , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/mortalidade , Estudos Multicêntricos como Assunto , Intervalo Livre de Progressão , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo , Resultado do Tratamento
16.
Photodiagnosis Photodyn Ther ; 20: 111-115, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28951177

RESUMO

BACKGROUND: Chordomas are very rare tumors of the skull base and the sacrum. They show infiltrating and destructive growth and are known to be chemo- and radio-resistant. After surgical resection, the recurrence rate is high and overall survival limited. As current adjuvant treatments are ineffective, new treatment concepts are urgently needed. 5-aminolevulinic acid-based photodynamic therapy (5-ALA based PDT) showed promising results for malignant gliomas. However, it is unknown so far, whether chordomas accumulate protoporphyrin IX (PPIX) after application of 5-ALA and whether they are sensitive to subsequent 5-ALA based PDT. METHODS: The immortalized human chordoma cells U-CH2 were used as in vitro model. After incubation for 4h or 6h with different 5-ALA concentrations, PPIX accumulation was determined by flow cytometry. To assess sensitivity to PDT, chordoma cells were incubated at 30.000cells/well (high cell density) or 15.000cells/well (low cell density) with graded doses of 5-ALA (0-50µg/ml) in 96-well plates and subsequently exposed to laser light of 635nm wavelength (18.75J/cm2). Cell survival was measured 24h after exposure to laser light using the WST-1 assay. RESULTS: U-CH2 cells dose-dependently accumulated PPIX (ANOVA; p<0.0001). PPIX fluorescence was significantly higher, when cells were incubated with 5-ALA for 6h compared to 4h at higher 5-ALA concentrations (ANOVA/Bonferroni; p≤0.05 for≥30µg/ml 5-ALA). For both cell densities, a 5-ALA dose-dependent decline in viability was observed (ANOVA; p<0.0001). Viability was significantly lower at higher 5-ALA concentrations, when 30.000 cells/wells were treated compared to 15.000cells/well (ANOVA/Bonferroni; p≤0.001 for≥30µg/ml 5-ALA). LD50 was 30.25µg/ml 5-ALA. CONCLUSION: The human UCH-2 cell line was a very useful in vitro model to study different effects of 5-ALA based PDT. For the first time, it could be shown that human chordoma cells may be destroyed by 5-ALA/PDT.


Assuntos
Cordoma/patologia , Ácidos Levulínicos/farmacologia , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/farmacocinética , Linhagem Celular Tumoral , Cordoma/cirurgia , Relação Dose-Resposta a Droga , Humanos , Invasividade Neoplásica , Procedimentos Neurocirúrgicos/métodos , Ácido Aminolevulínico
17.
J Neurosurg ; 105(1): 41-50, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16874889

RESUMO

OBJECT: Vaccination therapy that uses dendritic cells (DCs) is a promising immunotherapeutic approach. However, it relies on intact cellular immunity and efficient generation of mature DCs, both of which can be impaired in patients with glioma. Therefore, the immune status and ex vivo generation of DC in such patients were studied. METHODS: The frequencies of white blood cell subsets and monocyte-derived, mature DCs in patients with high-grade gliomas and healthy control volunteers were analyzed using flow cytometry. In the patients, frequencies of lymphocytes, T cells, and B cells were reduced in comparison with the volunteers in the control group, whereas frequencies of neutrophils and monocytes were increased. There were no differences between the two groups in terms of white blood cell counts or the frequency of NK cells and the major T-cell subsets. The responsiveness of T cells to lectin stimulation was normal. For monocytes, lower frequencies of CD80+ and CD86+ cells but not of CD40+ and HLA-DR+ cells were observed in patients. Ex vivo DC generation in a two-step culture protocol in autologous plasma-supplemented medium or in serum-free medium showed only minor differences in CD80 and HLA-DR expression between the patient and control groups. Frequencies of CD83+, CD1a+, CD14-, CD40+, and CD86+ cells were comparable. Overall, the serum-free medium was superior to the plasma-supplemented medium and allowed efficient ex vivo generation of CD83+, CD1a+, and CD14- mature DCs. CONCLUSIONS: Only minor defects in the immune status of patients with glioma were observed, which probably would not hamper immunotherapy. Mature DCs can be generated successfully in normal numbers and with typical immunophenotypes from monocytes of patients with glioma, particularly under serum-free conditions.


Assuntos
Neoplasias Encefálicas/imunologia , Células Dendríticas/citologia , Glioma/imunologia , Adulto , Antígenos CD/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Técnicas de Cultura de Células , Diferenciação Celular , Feminino , Glioma/metabolismo , Glioma/patologia , Antígenos HLA-DR/metabolismo , Humanos , Imunidade Celular , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade
18.
Exp Hematol ; 33(5): 573-83, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15850835

RESUMO

OBJECTIVE: Cytokine production and hematopoiesis-supporting stromal activity of cord blood (CB)-derived unrestricted somatic stem cells (USSC) in comparison to bone marrow mesenchymal stem cells (BMMSC) and hematopoietic progenitor expansion solely driven by recombinant cytokines were assessed. METHODS: USSC generation was initiated from fresh and cryopreserved CB. Cytokine production by USSC and BMMSC was determined qualitatively by cytokine mRNA expression array analyses or quantitatively by Multiplex or ELISA analyses. To evaluate hematopoiesis-supporting activity, CB CD34+ cells were expanded in cocultures with USSC and BMMSC or in the presence of Flt3-L, SCF, and TPO. Expansion of CD34+ cells, total cells, colony-forming cells (CFC), and LTC-IC were determined after 1, 2, 3, and 4 weeks of culture. RESULTS: USSC constitutively produced SCF, LIF, TGF-1beta, M-CSF, GM-CSF, VEGF, IL-1beta, IL-6, IL-8, IL-11, IL-12, IL-15, SDF-1alpha, and HGF. When USSC were stimulated with IL-1beta, G-CSF was released. Production of SCF and LIF were significantly higher in USSC compared to BMMSC. At 1, 2, 3, and 4 weeks, cocultivation of CD34+ cells on the USSC layer resulted in a 14.6-fold +/- 1.1-fold, 110.1-fold +/- 17.9-fold, 151.8-fold +/- 39.7-fold, and 183.6-fold +/- 40.4-fold amplification of total cells and in a 30.6-fold +/- 4.4-fold, 101.4-fold +/- 27.5-fold, 64.7-fold +/- 15.8-fold, and 29.4-fold +/- 3.1-fold amplification of CFC, respectively. LTC-IC expansion at 1 and 2 weeks was, with 2.0-fold +/- 0.1-fold and 2.5-fold +/- 0.3-fold, significantly higher for USSC than BMMSC (1.1-fold +/- 0.03-fold and 1.1-fold +/- 0.1-fold), but declined after day 21. Transwell cocultures of USSC did not significantly alter total cell or CFC expansion. CONCLUSIONS: USSC produce functionally significant amounts of hematopoiesis-supporting cytokines and are superior to BMMSC in expansion of CD34+ cells from CB. USSC is therefore a suitable candidate for stroma-driven ex vivo expansion of hematopoietic CB cells for short-term reconstitution.


Assuntos
Células da Medula Óssea/citologia , Citocinas/biossíntese , Sangue Fetal/citologia , Hematopoese , Antígenos CD/análise , Técnicas de Cocultura , Meios de Cultivo Condicionados , Citocinas/genética , Ensaio de Imunoadsorção Enzimática , Humanos , Imunofenotipagem , RNA Mensageiro/genética , Células-Tronco
19.
J Photochem Photobiol B ; 163: 203-10, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27588717

RESUMO

Glioblastoma (GBM) is the most frequent and lethal primary brain tumor in adults. Despite multimodal therapy combining resection, radio- and alkylating chemotherapy, disease recurrence is universal and prognosis of patients is poor. Glioblastoma stem-like cells (GSC), which can be grown as neurospheres from primary tumors in vitro, appear to be resistant to the established therapies and are suspected to be the driving force for disease recurrence. Thus, efficacy of emerging therapies may depend on targeting GSC. 5-aminolaevulinic acid-mediated photodynamic therapy (5-ALA/PDT) is a promising therapeutic approach in GBM. It utilizes the selective accumulation of the photosensitizer protoporphyrin IX (PPIX) in GBM cells after application of 5-ALA. When exposed to laser light of 635nm wavelength, PPIX initiates a photochemical reaction resulting in the generation of reactive oxygen species, which kill the tumor cells. Whether GSC accumulate PPIX and are sensitive to 5-ALA/PDT is currently unknown. Therefore, human GSC were derived from primary tumors and grown as neurospheres under serum free conditions. When subjected to exogenous 5-ALA, a dose- and time-dependent accumulation of PPIX in GSC was observed by flow cytometry, which varied between individual GSC preparations. Subsequent exposure to laser light of 635nm wavelength substantially killed GSC, whereas treatment with 5-ALA or exposure to laser light only had no effect. LD50 values differed between GSC preparations, but were negatively correlated with PPIX accumulation in GSC. In summary, we report for the first time that glioblastoma stem-like cells accumulate PPIX when subjected to 5-aminolaevulinic acid and are sensitive to 5-aminolaevulinc acid based photodynamic therapy.


Assuntos
Ácido Aminolevulínico/farmacologia , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/metabolismo , Protoporfirinas/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/farmacologia , Fatores de Tempo
20.
Circulation ; 106(15): 1913-8, 2002 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-12370212

RESUMO

BACKGROUND: Experimental data suggest that bone marrow-derived cells may contribute to the healing of myocardial infarction (MI). For this reason, we analyzed 10 patients who were treated by intracoronary transplantation of autologous, mononuclear bone marrow cells (BMCs) in addition to standard therapy after MI. METHODS AND RESULTS: After standard therapy for acute MI, 10 patients were transplanted with autologous mononuclear BMCs via a balloon catheter placed into the infarct-related artery during balloon dilatation (percutaneous transluminal coronary angioplasty). Another 10 patients with acute MI were treated by standard therapy alone. After 3 months of follow-up, the infarct region (determined by left ventriculography) had decreased significantly within the cell therapy group (from 30+/-13 to 12+/-7%, P=0.005) and was also significantly smaller compared with the standard therapy group (P=0.04). Likewise, infarction wall movement velocity increased significantly only in the cell therapy group (from 2.0+/-1.1 to 4.0+/-2.6 cm/s, P=0.028). Further cardiac examinations (dobutamine stress echocardiography, radionuclide ventriculography, and catheterization of the right heart) were performed for the cell therapy group and showed significant improvement in stroke volume index, left ventricular end-systolic volume and contractility (ratio of systolic pressure and end-systolic volume), and myocardial perfusion of the infarct region. CONCLUSIONS: These results demonstrate for the first time that selective intracoronary transplantation of autologous, mononuclear BMCs is safe and seems to be effective under clinical conditions. The marked therapeutic effect may be attributed to BMC-associated myocardial regeneration and neovascularization.


Assuntos
Transplante de Medula Óssea , Transplante de Células/métodos , Infarto do Miocárdio/cirurgia , Angioplastia Coronária com Balão , Transplante de Células/efeitos adversos , Células Cultivadas , Angiografia Coronária , Seguimentos , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/fisiopatologia , Ventriculografia com Radionuclídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA