Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(21): 14758-14771, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34669386

RESUMO

Urban sanitation infrastructure is inadequate in many low-income countries, leading to the presence of highly concentrated, uncontained fecal waste streams in densely populated areas. Combined with mechanisms of aerosolization, airborne transport of enteric microbes and their genetic material is possible in such settings but remains poorly characterized. We detected and quantified enteric pathogen-associated gene targets in aerosol samples near open wastewater canals (OWCs) or impacted (receiving sewage or wastewater) surface waters and control sites in La Paz, Bolivia; Kanpur, India; and Atlanta, USA, via multiplex reverse-transcription qPCR (37 targets) and ddPCR (13 targets). We detected a wide range of enteric targets, some not previously reported in extramural urban aerosols, with more frequent detections of all enteric targets at higher densities in La Paz and Kanpur near OWCs. We report density estimates ranging up to 4.7 × 102 gc per mair3 across all targets including heat-stable enterotoxigenic Escherichia coli, Campylobacter jejuni, enteroinvasive E. coli/Shigella spp., Salmonella spp., norovirus, and Cryptosporidium spp. Estimated 25, 76, and 0% of samples containing positive pathogen detects were accompanied by culturable E. coli in La Paz, Kanpur, and Atlanta, respectively, suggesting potential for viability of enteric microbes at the point of sampling. Airborne transmission of enteric pathogens merits further investigation in cities with poor sanitation.


Assuntos
Criptosporidiose , Cryptosporidium , Aerossóis , Cidades , Escherichia coli , Fezes , Humanos , Saneamento , Águas Residuárias
2.
Environ Res ; 194: 110730, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33444611

RESUMO

Antibiotic resistance poses a major global health threat. Understanding emergence and dissemination of antibiotic resistance in environmental media is critical to the design of control strategies. Because antibiotic resistance genes (ARGs) may be aerosolized from contaminated point sources and disseminated more widely in localized environments, we assessed ARGs in aerosols in urban La Paz, Bolivia, where wastewater flows in engineered surface water channels through the densely populated urban core. We quantified key ARGs and a mobile integron (MI) via ddPCR and E. coli spp. as a fecal indicator by culture over two years during both the rainy and dry seasons in sites near wastewater flows. ARG targets represented major antibiotic groups-tetracyclines (tetA), fluoroquinolines (qnrB), and beta-lactams (blaTEM)-and an MI (intI1) represented the potential for mobility of genetic material. Most air samples (82%) had detectable targets above the experimentally determined LOD: most commonly blaTEM and intI1 (68% and 47% respectively) followed by tetA and qnrB (17% and 11% respectively). ARG and MI densities in positive air samples ranged from 1.3 × 101 to 6.6 × 104 gene copies/m3 air. Additionally, we detected culturable E. coli in the air (52% of samples <1 km from impacted surface waters) with an average density of 11 CFU/m3 in positive samples. We observed decreasing density of blaTEM with increasing distance up to 150 m from impacted surface waters. To our knowledge this is the first study conducting absolute quantification and a spatial analysis of ARGs and MIs in ambient urban air of a city with contaminated surface waters. Environments in close proximity to urban wastewater flows in this setting may experience locally elevated concentrations of ARGs, a possible concern for the emergence and dissemination of antimicrobial resistance in cities with poor sanitation.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Aerossóis , Antibacterianos/farmacologia , Bolívia , Cidades , Escherichia coli/genética , Genes Bacterianos , Águas Residuárias
3.
Sci Total Environ ; 760: 143340, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183829

RESUMO

As a highly contaminated waterway flowing through a densely populated urban area, microbiological pollution associated with the Choqueyapu River and the absence of a wastewater treatment plant in La Paz city threatens public health. We collected air samples adjacent to this river using impingement. Laboratory analyses identified the presence of Enterobacteriaceae, reporting a maximum concentration of 86,11 CFU/m3 of sampled air. Positive samples were tested for antibiotic susceptibility against the antibiotics amoxicillin-clavulanic acid, ciprofloxacin, gentamicin, meropenem, sulfamethoxazole-trimethoprim and tetracycline via disk diffusion. The highest percentages of antibiotic resistance were registered for tetracycline (50% of isolates) and sulfamethoxazole-trimethoprim (38,9%), while the lowest resistance profile was reported for meropenem (5,6%). A comparison of results obtained on the pilot studies [elaborated during the wet season of 2018 by Chavez, 2019 and Salazar et al., 2020] and the present study has been done, highlighting seasonal effects over airborne Enterobacteriaceae concentration. Also, it was determined an increase of antibiotic resistance for tetracycline, gentamicin and ciprofloxacin; and a reduction for sulfamethoxazole-trimethoprim, meropenem and amoxicillin-clavulanic acid.


Assuntos
Enterobacteriaceae , Rios , Antibacterianos/farmacologia , Bolívia , Resistência Microbiana a Medicamentos , Testes de Sensibilidade Microbiana
4.
Sci Total Environ ; 738: 139495, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32425257

RESUMO

Evidence of exposure to enteric pathogens through the air and associated risk of infection is scarce in the literature outside of animal- or human-waste handling settings. Cities with poor sanitation are important locations to investigate this aerial exposure pathway as their rapid growth will pose unprecedented challenges in waste management. To address this issue, simple surveillance methods are needed. Therefore, the objectives of this study were to optimize a community exposure bioaerosol surveillance strategy for urban outdoor locations with poor sanitation, and to determine which bioaerosols could contribute to exposure. Passive and active bioaerosol sampling methods were used to characterize the fate and transport of sanitation-related bioaerosols during the rainy and dry seasons in La Paz, Bolivia. Median coliform bacteria fluxes were 71 CFU/(m2 × h) during the rainy season and 64 CFU/(m2 × h) during the dry season, with 38% of the dry season samples testing positive for E. coli. Wind speed, relative humidity and UVB irradiance were identified as significant covariates to consider in bioaerosol transport models in La Paz. Active sampling yielded one positive sample (10%) for human adenovirus (HadV) and one sample (10%) for influenza A virus during the rainy season. HadV was detected at the site with the highest bacterial flux. Four samples (8%) were positive for influenza A virus in the dry season. These findings suggest that aerosols can contribute to community exposure to potentially pathogenic microorganisms in cities with poor sanitation. The use of passive sampling, despite its limitations, can provide quantitative data on microorganisms' viability within realistic timeframes of personal exposure.


Assuntos
Saúde Única , Saneamento , Aerossóis , Microbiologia do Ar , Animais , Bolívia , Cidades , Estudos Transversais , Escherichia coli , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA