Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Ther ; 30(9): 3078-3094, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35821637

RESUMO

mRNA vaccines have recently proved to be highly effective against SARS-CoV-2. Key to their success is the lipid-based nanoparticle (LNP), which enables efficient mRNA expression and endows the vaccine with adjuvant properties that drive potent antibody responses. Effective cancer vaccines require long-lived, qualitative CD8 T cell responses instead of antibody responses. Systemic vaccination appears to be the most effective route, but necessitates adaptation of LNP composition to deliver mRNA to antigen-presenting cells. Using a design-of-experiments methodology, we tailored mRNA-LNP compositions to achieve high-magnitude tumor-specific CD8 T cell responses within a single round of optimization. Optimized LNP compositions resulted in enhanced mRNA uptake by multiple splenic immune cell populations. Type I interferon and phagocytes were found to be essential for the T cell response. Surprisingly, we also discovered a yet unidentified role of B cells in stimulating the vaccine-elicited CD8 T cell response. Optimized LNPs displayed a similar, spleen-centered biodistribution profile in non-human primates and did not trigger histopathological changes in liver and spleen, warranting their further assessment in clinical studies. Taken together, our study clarifies the relationship between nanoparticle composition and their T cell stimulatory capacity and provides novel insights into the underlying mechanisms of effective mRNA-LNP-based antitumor immunotherapy.


Assuntos
COVID-19 , Vacinas Anticâncer , Nanopartículas , Animais , Imunização/métodos , Imunoterapia , RNA Mensageiro/metabolismo , SARS-CoV-2/genética , Baço , Distribuição Tecidual , Vacinação/métodos
2.
Curr Diab Rep ; 19(9): 82, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31401790

RESUMO

PURPOSE OF REVIEW: We provide an overview of the current knowledge regarding the natural history of human type 1 diabetes (T1D) and the documented associations between virus infections (in particular the enteroviruses) and disease development. We review studies that examine whether T1D-specific risk alleles in genes involved in the function of the immune system can alter susceptibility to virus infections or affect the magnitude of the host antiviral response. We also highlight where the major gaps in our knowledge exist and consider possible implications that new insights gained from the discussed gene-environment interaction studies may bring. RECENT FINDINGS: A commonality between several of the studied T1D risk variants studied is their role in modulating the host immune response to viral infection. Generally, little support exists indicating that the risk variants increase susceptibility to infection and moreover, they usually appear to predispose the immune system towards a hyper-reactive state, decrease the risk of infection, and/or favor the establishment of viral persistence. In conclusion, although the current number of studies is limited, this type of research can provide important insights into the mechanisms that are central to disease pathogenesis and further describe how genetic and environmental factors jointly influence the risk of T1D development. The latter may provide genetic markers that could be used for patient stratification and for the selection of method(s) for disease prevention.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Infecções por Enterovirus/genética , Interação Gene-Ambiente , Alelos , Autoimunidade , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/virologia , Enterovirus/genética , Enterovirus/imunologia , Infecções por Enterovirus/imunologia , Predisposição Genética para Doença , Humanos , Células Secretoras de Insulina/imunologia , Fenótipo , Polimorfismo Genético
3.
Nucleic Acids Res ; 39(9): 3972-87, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21245043

RESUMO

While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential.


Assuntos
Peptídeos Penetradores de Células/química , Lipopeptídeos/química , Quinolinas/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Animais , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/toxicidade , Células Cultivadas , Endossomos/metabolismo , Humanos , Indicadores e Reagentes , Mediadores da Inflamação/metabolismo , Lipídeos , Lipopeptídeos/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/toxicidade , Quinolinas/metabolismo
4.
Nat Commun ; 14(1): 4734, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550290

RESUMO

Extracellular vesicles (EVs) are gaining ground as next-generation drug delivery modalities. Genetic fusion of the protein of interest to a scaffold protein with high EV-sorting ability represents a robust cargo loading strategy. To address the paucity of such scaffold proteins, we leverage a simple and reliable assay that can distinguish intravesicular cargo proteins from surface- as well as non-vesicular proteins and compare the EV-sorting potential of 244 candidate proteins. We identify 24 proteins with conserved EV-sorting abilities across five types of producer cells. TSPAN2 and TSPAN3 emerge as lead candidates and outperform the well-studied CD63 scaffold. Importantly, these engineered EVs show promise as delivery vehicles in cell cultures and mice as demonstrated by efficient transfer of luminal cargo proteins as well as surface display of different functional entities. The discovery of these scaffolds provides a platform for EV-based engineering.


Assuntos
Vesículas Extracelulares , Camundongos , Animais , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Sistemas de Liberação de Medicamentos , Transporte Proteico , Comunicação Celular
5.
Mol Ther ; 19(8): 1457-67, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21343913

RESUMO

Finding suitable nonviral delivery vehicles for nucleic acid-based therapeutics is a landmark goal in gene therapy. Cell-penetrating peptides (CPPs) are one class of delivery vectors that has been exploited for this purpose. However, since CPPs use endocytosis to enter cells, a large fraction of peptides remain trapped in endosomes. We have previously reported that stearylation of amphipathic CPPs, such as transportan 10 (TP10), dramatically increases transfection of oligonucleotides in vitro partially by promoting endosomal escape. Therefore, we aimed to evaluate whether stearyl-TP10 could be used for the delivery of plasmids as well. Our results demonstrate that stearyl-TP10 forms stable nanoparticles with plasmids that efficiently enter different cell-types in a ubiquitous manner, including primary cells, resulting in significantly higher gene expression levels than when using stearyl-Arg9 or unmodified CPPs. In fact, the transfection efficacy of stearyl-TP10 almost reached the levels of Lipofectamine 2000 (LF2000), however, without any of the observed lipofection-associated toxicities. Most importantly, stearyl-TP10/plasmid nanoparticles are nonimmunogenic, mediate efficient gene delivery in vivo, when administrated intramuscularly (i.m.) or intradermally (i.d.) without any associated toxicity in mice.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Plasmídeos/metabolismo , Transfecção/métodos , Animais , Transporte Biológico , Linhagem Celular , Cricetinae , Cricetulus , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Terapia Genética/métodos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ácidos Nucleicos/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 971313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246930

RESUMO

The mechanism by which pancreatic beta cells are destroyed in type 1 diabetes (T1D) remains to be fully understood. Recent observations indicate that the disease may arise because of different pathobiological mechanisms (endotypes). The discovery of one or several protein biomarkers measurable in readily available liquid biopsies (e.g. blood plasma) during the pre-diabetic period may enable personalized disease interventions. Recent studies have shown that extracellular vesicles (EVs) are a source of tissue proteins in liquid biopsies. Using plasma samples collected from pre-diabetic non-obese diabetic (NOD) mice (an experimental model of T1D) we addressed if combined analysis of whole plasma samples and plasma-derived EV fractions increases the number of unique proteins identified by mass spectrometry (MS) compared to the analysis of whole plasma samples alone. LC-MS/MS analysis of plasma samples depleted of abundant proteins and subjected to peptide fractionation identified more than 2300 proteins, while the analysis of EV-enriched plasma samples identified more than 600 proteins. Of the proteins detected in EV-enriched samples, more than a third were not identified in whole plasma samples and many were classified as either tissue-enriched or of tissue-specific origin. In conclusion, parallel profiling of EV-enriched plasma fractions and whole plasma samples increases the overall proteome depth and facilitates the discovery of tissue-enriched proteins in plasma. If applied to plasma samples collected longitudinally from the NOD mouse or from models with other pathobiological mechanisms, the integrated proteome profiling scheme described herein may be useful for the discovery of new and potentially endotype specific biomarkers in T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Vesículas Extracelulares , Estado Pré-Diabético , Animais , Biomarcadores , Cromatografia Líquida/métodos , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Plasma/metabolismo , Estado Pré-Diabético/metabolismo , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem
7.
J Extracell Vesicles ; 11(6): e12238, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35716060

RESUMO

Extracellular vesicles (EVs) play a key role in many physiological and pathophysiological processes and hold great potential for therapeutic and diagnostic use. Despite significant advances within the last decade, the key issue of EV storage stability remains unresolved and under investigated. Here, we aimed to identify storage conditions stabilizing EVs and comprehensively compared the impact of various storage buffer formulations at different temperatures on EVs derived from different cellular sources for up to 2 years. EV features including concentration, diameter, surface protein profile and nucleic acid contents were assessed by complementary methods, and engineered EVs containing fluorophores or functionalized surface proteins were utilized to compare cellular uptake and ligand binding. We show that storing EVs in PBS over time leads to drastically reduced recovery particularly for pure EV samples at all temperatures tested, starting already within days. We further report that using PBS as diluent was found to result in severely reduced EV recovery rates already within minutes. Several of the tested new buffer conditions largely prevented the observed effects, the lead candidate being PBS supplemented with human albumin and trehalose (PBS-HAT). We report that PBS-HAT buffer facilitates clearly improved short-term and long-term EV preservation for samples stored at -80°C, stability throughout several freeze-thaw cycles, and drastically improved EV recovery when using a diluent for EV samples for downstream applications.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Vesículas Extracelulares/metabolismo , Congelamento , Humanos , Ácidos Nucleicos/metabolismo , Trealose/metabolismo
8.
Cells ; 10(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207405

RESUMO

The extracellular environment consists of a plethora of molecules, including extracellular miRNA that can be secreted in association with extracellular vesicles (EVs) or soluble protein complexes (non-EVs). Yet, interest in therapeutic short RNA carriers lies mainly in EVs, the vehicles conveying the great majority of the biological activity. Here, by overexpressing miRNA and shRNA sequences in parent cells and using size exclusion liquid chromatography (SEC) to separate the secretome into EV and non-EV fractions, we saw that >98% of overexpressed miRNA was secreted within the non-EV fraction. Furthermore, small RNA sequencing studies of native miRNA transcripts revealed that although the abundance of miRNAs in EVs, non-EVs and parent cells correlated well (R2 = 0.69-0.87), quantitatively an outstanding 96.2-99.9% of total miRNA was secreted in the non-EV fraction. Nevertheless, though EVs contained only a fraction of secreted miRNAs, these molecules were stable at 37 °C in a serum-containing environment, indicating that if sufficient miRNA loading is achieved, EVs can remain delivery-competent for a prolonged period of time. This study suggests that the passive endogenous EV loading strategy might be a relatively wasteful way of loading miRNA to EVs, and active miRNA loading approaches are needed for developing advanced EV miRNA therapies in the future.


Assuntos
Vesículas Extracelulares/genética , Vesículas Extracelulares/fisiologia , RNA Interferente Pequeno/genética , Linhagem Celular , Células HEK293 , Humanos , MicroRNAs/genética , Análise de Sequência de RNA/métodos
9.
Biomedicines ; 9(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34440250

RESUMO

Splice-switching therapy with splice-switching oligonucleotides (SSOs) has recently proven to be a clinically applicable strategy for the treatment of several mis-splice disorders. Despite this, wider application of SSOs is severely limited by the inherently poor bioavailability of SSO-based therapeutic compounds. Cell-penetrating peptides (CPPs) are a class of drug delivery systems (DDSs) that have recently gained considerable attention for improving the uptake of various oligonucleotide (ON)-based compounds, including SSOs. One strategy that has been successfully applied to develop effective CPP vectors is the introduction of various lipid modifications into the peptide. Here, we repurpose hydrocarbon-modified amino acids used in peptide stapling for the orthogonal introduction of hydrophobic modifications into the CPP structure during peptide synthesis. Our data show that α,α-disubstituted alkenyl-alanines can be successfully utilized to introduce hydrophobic modifications into CPPs to improve their ability to formulate SSOs into nanoparticles (NPs), and to mediate high delivery efficacy and tolerability both in vitro and in vivo. Conclusively, our results offer a new flexible approach for the sequence-specific introduction of hydrophobicity into the structure of CPPs and for improving their delivery properties.

10.
Nat Biomed Eng ; 5(9): 1084-1098, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34616047

RESUMO

Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-α) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-α and IL-6 pathways.


Assuntos
Vesículas Extracelulares , Doenças Neuroinflamatórias , Animais , Citocinas , Inflamação , Camundongos , Fator de Necrose Tumoral alfa
11.
Nucleic Acids Res ; 36(12): e75, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18539607

RESUMO

Detection of DNA sequence variation is critical to biomedical applications, including disease genetic identification, diagnosis and treatment, drug discovery and forensic analysis. Here, we describe an arrayed primer extension-based genotyping method (APEX-2) that allows multiplex (640-plex) DNA amplification and detection of single nucleotide polymorphisms (SNPs) and mutations on microarrays via four-color single-base primer extension. The founding principle of APEX-2 multiplex PCR requires two oligonucleotides per SNP/mutation to generate amplicons containing the position of interest. The same oligonucleotides are then subsequently used as immobilized single-base extension primers on a microarray. The method described here is ideal for SNP or mutation detection analysis, molecular diagnostics and forensic analysis. This robust genetic test has minimal requirements: two primers, two spots on the microarray and a low cost four-color detection system for the targeted site; and provides an advantageous alternative to high-density platforms and low-density detection systems.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Primers do DNA , Genótipo , Humanos , Mutação
12.
Sci Rep ; 8(1): 10813, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018314

RESUMO

Extracellular vesicles (EVs) mediate cell-to-cell communication by delivering or displaying macromolecules to their recipient cells. While certain broad-spectrum EV effects reflect their protein cargo composition, others have been attributed to individual EV-loaded molecules such as specific miRNAs. In this work, we have investigated the contents of vesicular cargo using small RNA sequencing of cells and EVs from HEK293T, RD4, C2C12, Neuro2a and C17.2. The majority of RNA content in EVs (49-96%) corresponded to rRNA-, coding- and tRNA fragments, corroborating with our proteomic analysis of HEK293T and C2C12 EVs which showed an enrichment of ribosome and translation-related proteins. On the other hand, the overall proportion of vesicular small RNA was relatively low and variable (2-39%) and mostly comprised of miRNAs and sequences mapping to piRNA loci. Importantly, this is one of the few studies, which systematically links vesicular RNA and protein cargo of vesicles. Our data is particularly useful for future work in unravelling the biological mechanisms underlying vesicular RNA and protein sorting and serves as an important guide in developing EVs as carriers for RNA therapeutics.


Assuntos
Vesículas Extracelulares/metabolismo , Proteoma/análise , RNA Nuclear Pequeno/metabolismo , Transcriptoma , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Células HEK293 , Humanos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Nuclear Pequeno/química , Análise de Sequência de RNA , Espectrometria de Massas em Tandem
13.
Mol Ther Nucleic Acids ; 13: 1-15, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30219269

RESUMO

Extracellular small RNAs (sRNAs), including microRNAs (miRNAs), are promising biomarkers for diseases such as Duchenne muscular dystrophy (DMD), although their biological relevance is largely unknown. To investigate the relationship between intracellular and extracellular sRNA levels on a global scale, we performed sRNA sequencing in four muscle types and serum from wild-type, dystrophic mdx, and mdx mice in which dystrophin protein expression was restored by exon skipping. Differentially abundant sRNAs were identified in serum (mapping to miRNA, small nuclear RNA [snRNA], and PIWI-interacting RNA [piRNA] loci). One novel candidate biomarker, miR-483, was increased in both mdx serum and muscle, and also elevated in DMD patient sera. Dystrophin restoration induced global shifts in miRNA (including miR-483) and snRNA-fragment abundance toward wild-type levels. Specific serum piRNA-like sRNAs also responded to exon skipping therapy. Absolute miRNA expression in muscle was positively correlated with abundance in the circulation, although multiple highly expressed miRNAs in muscle were not elevated in mdx serum, suggesting that both passive and selective release mechanisms contribute to serum miRNA levels. In conclusion, this study has revealed new insights into the sRNA biology of dystrophin deficiency and identified novel DMD biomarkers.

14.
Mol Ther Nucleic Acids ; 5: e290, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-27111416

RESUMO

The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.

15.
J Extracell Vesicles ; 4: 26316, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25899407

RESUMO

Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in a diverse range of biological processes. For future therapeutic applications and for EV biology research in general, understanding the in vivo fate of EVs is of utmost importance. Here we studied biodistribution of EVs in mice after systemic delivery. EVs were isolated from 3 different mouse cell sources, including dendritic cells (DCs) derived from bone marrow, and labelled with a near-infrared lipophilic dye. Xenotransplantation of EVs was further carried out for cross-species comparison. The reliability of the labelling technique was confirmed by sucrose gradient fractionation, organ perfusion and further supported by immunohistochemical staining using CD63-EGFP probed vesicles. While vesicles accumulated mainly in liver, spleen, gastrointestinal tract and lungs, differences related to EV cell origin were detected. EVs accumulated in the tumour tissue of tumour-bearing mice and, after introduction of the rabies virus glycoprotein-targeting moiety, they were found more readily in acetylcholine-receptor-rich organs. In addition, the route of administration and the dose of injected EVs influenced the biodistribution pattern. This is the first extensive biodistribution investigation of EVs comparing the impact of several different variables, the results of which have implications for the design and feasibility of therapeutic studies using EVs.

16.
Forensic Sci Int Genet ; 4(1): 43-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19948333

RESUMO

Human identification systems such as criminal databases, forensic DNA testing and genetic genealogy require reliable and cost-effective genotyping of autosomal, mitochondrial and Y chromosome markers from different biological materials, including venous blood and saliva. Although many such assays are available, few systems are capable of simultaneously detecting all three targets in a single reaction. Employing the APEX-2 principle, we have characterized a novel 124-plex assay, using specific primer extension, universal primer amplification and single base extension on an oligonucleotide array. The assay has been designed for simultaneous genotyping of SNPs from the single copy loci (46 autosomal and 29 Y chromosomal markers) side by side with SNPs from the mitochondrial genome (49 markers) that appears in up to thousands of copies per cell in certain tissue types. All the autosomal SNPs (from the SNPforID Consortium) included in the multiplex assay are unlinked and are distributed widely across autosomes, enabling genetic fingerprints to be distinguished. Mitochondrial DNA and Y chromosome polymorphisms that define haplogroups common in European populations are included to allow for maternity and paternity testing and for the analysis of genetic genealogies. After assay optimization we estimated the accuracy (99.83%) and call rate (99.66%) of the protocol on 17 mother-father-child/children families and five internal control DNAs. In addition, 79 unrelated Estonian and Swedish DNA samples were genotyped and the accuracy of mtDNA and Y chromosome haplogroup inference by the multiplex method was assessed using conventional genotyping methods and direct sequencing.


Assuntos
Impressões Digitais de DNA , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , Cromossomos Humanos Y , DNA Mitocondrial , Frequência do Gene , Marcadores Genéticos , Genótipo , Humanos , Paternidade , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA