Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phytopathology ; 112(3): 521-534, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34293910

RESUMO

Since 2016, devastating bacterial blotch affecting the fruiting bodies of Agaricus bisporus, Cordyceps militaris, Flammulina filiformis, and Pleurotus ostreatus in China has caused severe economic losses. We isolated 102 bacterial strains and characterized them polyphasically. We identified the causal agent as Pseudomonas tolaasii and confirmed the pathogenicity of the strains. A host range test further confirmed the pathogen's ability to infect multiple hosts. This is the first report in China of bacterial blotch in C. militaris caused by P. tolaasii. Whole-genome sequences were generated for three strains: Pt11 (6.48 Mb), Pt51 (6.63 Mb), and Pt53 (6.80 Mb), and pangenome analysis was performed with 13 other publicly accessible P. tolaasii genomes to determine their genetic diversity, virulence, antibiotic resistance, and mobile genetic elements. The pangenome of P. tolaasii is open, and many more gene families are likely to emerge with further genome sequencing. Multilocus sequence analysis using the sequences of four common housekeeping genes (glns, gyrB, rpoB, and rpoD) showed high genetic variability among the P. tolaasii strains, with 115 strains clustered into a monophyletic group. The P. tolaasii strains possess various genes for secretion systems, virulence factors, carbohydrate-active enzymes, toxins, secondary metabolites, and antimicrobial resistance genes that are associated with pathogenesis and adapted to different environments. The myriad of insertion sequences, integrons, prophages, and genome islands encoded in the strains may contribute to genome plasticity, virulence, and antibiotic resistance. These findings advance understanding of the determinants of virulence, which can be targeted for the effective control of bacterial blotch disease.


Assuntos
Genômica , Doenças das Plantas , Filogenia , Pseudomonas , Virulência/genética
2.
Sci Rep ; 13(1): 11366, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443168

RESUMO

As significant threats to global citrus production, Diaphorina citri (Kuwayama; Hemiptera: Psyllidae) and Trioza erytreae (Del Guercio; Hemiptera: Triozidae) have caused considerable losses to citrus trees globally. Diaphorina citri vectors "Candidatus Liberibacter asiaticus" and "Ca. L. americanus", whereas T. erytreae transmits "Ca. L. africanus" and "Ca. L. asiaticus", the pathogens responsible for citrus greening disease or Huanglongbing (HLB). Though HLB is a destructive disease of citrus wherever it occurs, information on the occurrence and geographical distribution of its vectors in Africa is limited. In recent surveys to determine if HLB vectors are present in Ghana, we observed eggs, nymphs, and adults of insects suspected to be D. citri and T. erytreae. Using morphological traits and DNA analyses, the identity of the suspected insects was confirmed to be D. citri and T. erytreae. Individuals of D. citri and T. erytreae were examined using qPCR for CLaf, CLam, and CLas, but none of them tested positive for any of the Liberibacter species. Herein we report, for the first time, the presence of D. citri and T. erytreae in Ghana (West Africa). We discuss the implications of this new threat to the citrus industry to formulate appropriate management strategies.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Gana , Rhizobiaceae/genética , Doenças das Plantas , Hemípteros/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA