Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci ; 193: 207-213, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29100756

RESUMO

AIMS: More than half of diabetic patients experience voiding disorder termed diabetic urinary bladder dysfunction (DBD). Here we have investigated how the alterations in transient receptor potential vanilloid 1 (TRPV1) ion channel expressed in bladder-innervating afferents may contribute to DBD pathogenesis. MAIN METHODS: The rat model of streptozotocin (STZ)-induced diabetes was used. The functional profile of TRPV1 in retrogradely labeled afferent, bladder-innervating dorsal root ganglia (DRG) neurons was examined using patch clamp. The level of TRPV1 transcripts in DRG was assessed with qRT-PCR. TRPV1-dependent component of detrusor smooth muscle (DSM) contractions was studied with muscle strip tensiometry. KEY FINDINGS: TRPV1-mediated current (ITRPV1) was increased in diabetic animals vs. controls by 42%. The expression of Trpv1 gene was found to be 63% higher in STZ-treated rats compared to controls, consistent with the respective electrophysiological data. Surprisingly, capsaicin-induced contractions of DSM were found to be 3-to-10-fold weaker in diabetic group depending on concentration of the agonist (100nM to 10µM). SIGNIFICANCE: Our findings suggest the dual role of TRPV1 in DBD. On the one hand, the increase of its functional expression may enhance micturition reflex arc functioning. On the other hand, at the local level, the decrease of TRPV1-dependent contractions may contribute to organ decompensation.


Assuntos
Canais de Cátion TRPV/metabolismo , Bexiga Urinária/fisiopatologia , Animais , Capsaicina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Wistar , Reflexo/efeitos dos fármacos , Estreptozocina/metabolismo , Canais de Cátion TRPV/genética , Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA